This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is nonzero. See nnne0ALT for a shorter proof using ax-pre-mulgt0 . This proof avoids 0lt1 , and thus ax-pre-mulgt0 , by splitting ax-1ne0 into the two separate cases 0 < 1 and 1 < 0 . (Contributed by NM, 27-Sep-1999) Remove dependency on ax-pre-mulgt0 . (Revised by Steven Nguyen, 30-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnne0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | 2 3 | lttri2i | ⊢ ( 1 ≠ 0 ↔ ( 1 < 0 ∨ 0 < 1 ) ) |
| 5 | 1 4 | mpbi | ⊢ ( 1 < 0 ∨ 0 < 1 ) |
| 6 | breq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 < 0 ↔ 1 < 0 ) ) | |
| 7 | 6 | imbi2d | ⊢ ( 𝑥 = 1 → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → 1 < 0 ) ) ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 < 0 ↔ 𝑦 < 0 ) ) | |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → 𝑦 < 0 ) ) ) |
| 10 | breq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 < 0 ↔ ( 𝑦 + 1 ) < 0 ) ) | |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → ( 𝑦 + 1 ) < 0 ) ) ) |
| 12 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 < 0 ↔ 𝐴 < 0 ) ) | |
| 13 | 12 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 1 < 0 → 𝑥 < 0 ) ↔ ( 1 < 0 → 𝐴 < 0 ) ) ) |
| 14 | id | ⊢ ( 1 < 0 → 1 < 0 ) | |
| 15 | simp1 | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 𝑦 ∈ ℕ ) | |
| 16 | 15 | nnred | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 𝑦 ∈ ℝ ) |
| 17 | 1red | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 1 ∈ ℝ ) | |
| 18 | 16 17 | readdcld | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 19 | 3 2 | readdcli | ⊢ ( 0 + 1 ) ∈ ℝ |
| 20 | 19 | a1i | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 0 + 1 ) ∈ ℝ ) |
| 21 | 0red | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 0 ∈ ℝ ) | |
| 22 | simp3 | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 𝑦 < 0 ) | |
| 23 | 16 21 17 22 | ltadd1dd | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 𝑦 + 1 ) < ( 0 + 1 ) ) |
| 24 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 25 | 24 | addlidi | ⊢ ( 0 + 1 ) = 1 |
| 26 | simp2 | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → 1 < 0 ) | |
| 27 | 25 26 | eqbrtrid | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 0 + 1 ) < 0 ) |
| 28 | 18 20 21 23 27 | lttrd | ⊢ ( ( 𝑦 ∈ ℕ ∧ 1 < 0 ∧ 𝑦 < 0 ) → ( 𝑦 + 1 ) < 0 ) |
| 29 | 28 | 3exp | ⊢ ( 𝑦 ∈ ℕ → ( 1 < 0 → ( 𝑦 < 0 → ( 𝑦 + 1 ) < 0 ) ) ) |
| 30 | 29 | a2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 1 < 0 → 𝑦 < 0 ) → ( 1 < 0 → ( 𝑦 + 1 ) < 0 ) ) ) |
| 31 | 7 9 11 13 14 30 | nnind | ⊢ ( 𝐴 ∈ ℕ → ( 1 < 0 → 𝐴 < 0 ) ) |
| 32 | 31 | imp | ⊢ ( ( 𝐴 ∈ ℕ ∧ 1 < 0 ) → 𝐴 < 0 ) |
| 33 | 32 | lt0ne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 1 < 0 ) → 𝐴 ≠ 0 ) |
| 34 | breq2 | ⊢ ( 𝑥 = 1 → ( 0 < 𝑥 ↔ 0 < 1 ) ) | |
| 35 | 34 | imbi2d | ⊢ ( 𝑥 = 1 → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < 1 ) ) ) |
| 36 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 0 < 𝑥 ↔ 0 < 𝑦 ) ) | |
| 37 | 36 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < 𝑦 ) ) ) |
| 38 | breq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 0 < 𝑥 ↔ 0 < ( 𝑦 + 1 ) ) ) | |
| 39 | 38 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < ( 𝑦 + 1 ) ) ) ) |
| 40 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 0 < 𝑥 ↔ 0 < 𝐴 ) ) | |
| 41 | 40 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 0 < 1 → 0 < 𝑥 ) ↔ ( 0 < 1 → 0 < 𝐴 ) ) ) |
| 42 | id | ⊢ ( 0 < 1 → 0 < 1 ) | |
| 43 | simp1 | ⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 𝑦 ∈ ℕ ) | |
| 44 | 43 | nnred | ⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 45 | 1red | ⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 1 ∈ ℝ ) | |
| 46 | simp3 | ⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 0 < 𝑦 ) | |
| 47 | simp2 | ⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 0 < 1 ) | |
| 48 | 44 45 46 47 | addgt0d | ⊢ ( ( 𝑦 ∈ ℕ ∧ 0 < 1 ∧ 0 < 𝑦 ) → 0 < ( 𝑦 + 1 ) ) |
| 49 | 48 | 3exp | ⊢ ( 𝑦 ∈ ℕ → ( 0 < 1 → ( 0 < 𝑦 → 0 < ( 𝑦 + 1 ) ) ) ) |
| 50 | 49 | a2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 0 < 1 → 0 < 𝑦 ) → ( 0 < 1 → 0 < ( 𝑦 + 1 ) ) ) ) |
| 51 | 35 37 39 41 42 50 | nnind | ⊢ ( 𝐴 ∈ ℕ → ( 0 < 1 → 0 < 𝐴 ) ) |
| 52 | 51 | imp | ⊢ ( ( 𝐴 ∈ ℕ ∧ 0 < 1 ) → 0 < 𝐴 ) |
| 53 | 52 | gt0ne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 0 < 1 ) → 𝐴 ≠ 0 ) |
| 54 | 33 53 | jaodan | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( 1 < 0 ∨ 0 < 1 ) ) → 𝐴 ≠ 0 ) |
| 55 | 5 54 | mpan2 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |