This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm of 1 . One case of Property 1a of Cohen p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | log1 | ⊢ ( log ‘ 1 ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 2 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | relogeftb | ⊢ ( ( 1 ∈ ℝ+ ∧ 0 ∈ ℝ ) → ( ( log ‘ 1 ) = 0 ↔ ( exp ‘ 0 ) = 1 ) ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( ( log ‘ 1 ) = 0 ↔ ( exp ‘ 0 ) = 1 ) |
| 6 | 1 5 | mpbir | ⊢ ( log ‘ 1 ) = 0 |