This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfeq.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| seqfeq.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | seqfeq | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfeq.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | seqfeq.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 3 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑥 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 8 2 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑥 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 11 | 7 10 | seqfveq | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑥 ) ) |
| 12 | 4 6 11 | eqfnfvd | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐺 ) ) |