This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| Assertion | dvmptneg | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 7 | 1 2 3 4 6 | dvmptcmul | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐵 ) ) ) |
| 8 | 2 | mulm1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 9 | 8 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐴 ) ) |
| 10 | 9 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐴 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐴 ) ) ) |
| 11 | 1 2 3 4 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 12 | 11 | mulm1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - 1 · 𝐵 ) = - 𝐵 ) |
| 13 | 12 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( - 1 · 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐵 ) ) |
| 14 | 7 10 13 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐵 ) ) |