This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property for average. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | avglt1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐴 ) < ( 𝐴 + 𝐵 ) ) ) | |
| 2 | 1 | 3anidm13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 + 𝐴 ) < ( 𝐴 + 𝐵 ) ) ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 4 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 5 | times2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) ) |
| 7 | 6 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 2 ) < ( 𝐴 + 𝐵 ) ↔ ( 𝐴 + 𝐴 ) < ( 𝐴 + 𝐵 ) ) ) |
| 8 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 9 | 2re | ⊢ 2 ∈ ℝ | |
| 10 | 2pos | ⊢ 0 < 2 | |
| 11 | 9 10 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 13 | ltmuldiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐴 · 2 ) < ( 𝐴 + 𝐵 ) ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) | |
| 14 | 3 8 12 13 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 2 ) < ( 𝐴 + 𝐵 ) ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 15 | 2 7 14 | 3bitr2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |