This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm function maps the nonzero complex numbers one-to-one onto its range. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff1o2 | ⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) | |
| 2 | f1ocnv | ⊢ ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) → ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ) | |
| 3 | 1 2 | ax-mp | ⊢ ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 4 | dflog2 | ⊢ log = ◡ ( exp ↾ ran log ) | |
| 5 | f1oeq1 | ⊢ ( log = ◡ ( exp ↾ ran log ) → ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ↔ ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ↔ ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ) |
| 7 | 3 6 | mpbir | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |