This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| expcld.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | expcld | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | expcld.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 3 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |