This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvmptid.1 | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| Assertion | dvmptid | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptid.1 | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 4 | toponmax | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝜑 → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 6 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 8 | dfss2 | ⊢ ( 𝑆 ⊆ ℂ ↔ ( 𝑆 ∩ ℂ ) = 𝑆 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → ( 𝑆 ∩ ℂ ) = 𝑆 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 11 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 12 | mptresid | ⊢ ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) | |
| 13 | 12 | eqcomi | ⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) = ( I ↾ ℂ ) |
| 14 | 13 | oveq2i | ⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( ℂ D ( I ↾ ℂ ) ) |
| 15 | dvid | ⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) | |
| 16 | fconstmpt | ⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) | |
| 17 | 14 15 16 | 3eqtri | ⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 19 | 2 1 5 9 10 11 18 | dvmptres3 | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑆 ↦ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ 1 ) ) |