This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptsub.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) | ||
| dvmptsub.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) | ||
| dvmptsub.dc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | ||
| Assertion | dvmptsub | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptadd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptadd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptadd.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | dvmptsub.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) | |
| 6 | dvmptsub.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) | |
| 7 | dvmptsub.dc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | |
| 8 | 5 | negcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - 𝐶 ∈ ℂ ) |
| 9 | negex | ⊢ - 𝐷 ∈ V | |
| 10 | 9 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - 𝐷 ∈ V ) |
| 11 | 1 5 6 7 | dvmptneg | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ - 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ - 𝐷 ) ) |
| 12 | 1 2 3 4 8 10 11 | dvmptadd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + - 𝐷 ) ) ) |
| 13 | 2 5 | negsubd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 + - 𝐶 ) = ( 𝐴 − 𝐶 ) ) |
| 14 | 13 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + - 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) ) |
| 16 | 1 2 3 4 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 17 | 1 5 6 7 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) |
| 18 | 16 17 | negsubd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 + - 𝐷 ) = ( 𝐵 − 𝐷 ) ) |
| 19 | 18 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 + - 𝐷 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − 𝐷 ) ) ) |
| 20 | 12 15 19 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 − 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 − 𝐷 ) ) ) |