This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sylan9eqr

Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994)

Ref Expression
Hypotheses sylan9eqr.1 ( 𝜑𝐴 = 𝐵 )
sylan9eqr.2 ( 𝜓𝐵 = 𝐶 )
Assertion sylan9eqr ( ( 𝜓𝜑 ) → 𝐴 = 𝐶 )

Proof

Step Hyp Ref Expression
1 sylan9eqr.1 ( 𝜑𝐴 = 𝐵 )
2 sylan9eqr.2 ( 𝜓𝐵 = 𝐶 )
3 1 2 sylan9eq ( ( 𝜑𝜓 ) → 𝐴 = 𝐶 )
4 3 ancoms ( ( 𝜓𝜑 ) → 𝐴 = 𝐶 )