This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014) (Revised by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ovolicc2.4 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ovolicc2.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| ovolicc2.6 | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) | ||
| ovolicc2.7 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | ||
| ovolicc2.8 | ⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) | ||
| ovolicc2.9 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) | ||
| ovolicc2.10 | ⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } | ||
| ovolicc2.11 | ⊢ ( 𝜑 → 𝐻 : 𝑇 ⟶ 𝑇 ) | ||
| ovolicc2.12 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) | ||
| ovolicc2.13 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| ovolicc2.14 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | ||
| ovolicc2.15 | ⊢ 𝐾 = seq 1 ( ( 𝐻 ∘ 1st ) , ( ℕ × { 𝐶 } ) ) | ||
| ovolicc2.16 | ⊢ 𝑊 = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) } | ||
| ovolicc2.17 | ⊢ 𝑀 = inf ( 𝑊 , ℝ , < ) | ||
| Assertion | ovolicc2lem4 | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | ovolicc2.4 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 5 | ovolicc2.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 6 | ovolicc2.6 | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) | |
| 7 | ovolicc2.7 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | |
| 8 | ovolicc2.8 | ⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) | |
| 9 | ovolicc2.9 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) | |
| 10 | ovolicc2.10 | ⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } | |
| 11 | ovolicc2.11 | ⊢ ( 𝜑 → 𝐻 : 𝑇 ⟶ 𝑇 ) | |
| 12 | ovolicc2.12 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) | |
| 13 | ovolicc2.13 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 14 | ovolicc2.14 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | |
| 15 | ovolicc2.15 | ⊢ 𝐾 = seq 1 ( ( 𝐻 ∘ 1st ) , ( ℕ × { 𝐶 } ) ) | |
| 16 | ovolicc2.16 | ⊢ 𝑊 = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) } | |
| 17 | ovolicc2.17 | ⊢ 𝑀 = inf ( 𝑊 , ℝ , < ) | |
| 18 | arch | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ 𝑥 < 𝑧 ) | |
| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ∃ 𝑧 ∈ ℕ 𝑥 < 𝑧 ) |
| 20 | df-ima | ⊢ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) = ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) | |
| 21 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 22 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 23 | 21 15 22 14 11 | algrf | ⊢ ( 𝜑 → 𝐾 : ℕ ⟶ 𝑇 ) |
| 24 | 10 | ssrab3 | ⊢ 𝑇 ⊆ 𝑈 |
| 25 | fss | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑇 ⊆ 𝑈 ) → 𝐾 : ℕ ⟶ 𝑈 ) | |
| 26 | 23 24 25 | sylancl | ⊢ ( 𝜑 → 𝐾 : ℕ ⟶ 𝑈 ) |
| 27 | fco | ⊢ ( ( 𝐺 : 𝑈 ⟶ ℕ ∧ 𝐾 : ℕ ⟶ 𝑈 ) → ( 𝐺 ∘ 𝐾 ) : ℕ ⟶ ℕ ) | |
| 28 | 8 26 27 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐾 ) : ℕ ⟶ ℕ ) |
| 29 | fz1ssnn | ⊢ ( 1 ... 𝑀 ) ⊆ ℕ | |
| 30 | fssres | ⊢ ( ( ( 𝐺 ∘ 𝐾 ) : ℕ ⟶ ℕ ∧ ( 1 ... 𝑀 ) ⊆ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ) | |
| 31 | 28 29 30 | sylancl | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ) |
| 32 | 31 | frnd | ⊢ ( 𝜑 → ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ⊆ ℕ ) |
| 33 | 20 32 | eqsstrid | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℕ ) |
| 34 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 35 | 33 34 | sstrdi | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℝ ) |
| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℝ ) |
| 37 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) | |
| 38 | 36 37 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ℝ ) |
| 39 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑥 ∈ ℝ ) | |
| 40 | nnre | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) | |
| 41 | 40 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑧 ∈ ℝ ) |
| 42 | lelttr | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧 ) → 𝑦 < 𝑧 ) ) | |
| 43 | 38 39 41 42 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧 ) → 𝑦 < 𝑧 ) ) |
| 44 | 43 | ancomsd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝑥 < 𝑧 ∧ 𝑦 ≤ 𝑥 ) → 𝑦 < 𝑧 ) ) |
| 45 | 44 | expdimp | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) ∧ 𝑥 < 𝑧 ) → ( 𝑦 ≤ 𝑥 → 𝑦 < 𝑧 ) ) |
| 46 | 45 | an32s | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑥 < 𝑧 ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 ≤ 𝑥 → 𝑦 < 𝑧 ) ) |
| 47 | 46 | ralimdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑥 < 𝑧 ) → ( ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 48 | 47 | impancom | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ( 𝑥 < 𝑧 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 49 | 48 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ ℕ ) → ( 𝑥 < 𝑧 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 50 | 49 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ( ∃ 𝑧 ∈ ℕ 𝑥 < 𝑧 → ∃ 𝑧 ∈ ℕ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 51 | 19 50 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ∃ 𝑧 ∈ ℕ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) |
| 52 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) | |
| 53 | fvres | ⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) ) | |
| 54 | 53 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) ) |
| 55 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ℕ ) | |
| 56 | fvco3 | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑖 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | |
| 57 | 23 55 56 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 58 | 54 57 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 59 | 58 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 60 | fvres | ⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) ) | |
| 61 | 60 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) ) |
| 62 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ ) | |
| 63 | 62 | adantl | ⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ℕ ) |
| 64 | fvco3 | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) | |
| 65 | 23 63 64 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) |
| 66 | 61 65 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) |
| 67 | 59 66 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) ↔ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) |
| 68 | 2fveq3 | ⊢ ( ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) | |
| 69 | 29 | a1i | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ⊆ ℕ ) |
| 70 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℕ ) | |
| 71 | 70 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ∈ ℕ ) |
| 72 | 71 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ∈ ℝ ) |
| 73 | 16 | ssrab3 | ⊢ 𝑊 ⊆ ℕ |
| 74 | 73 34 | sstri | ⊢ 𝑊 ⊆ ℝ |
| 75 | 73 21 | sseqtri | ⊢ 𝑊 ⊆ ( ℤ≥ ‘ 1 ) |
| 76 | nnnfi | ⊢ ¬ ℕ ∈ Fin | |
| 77 | 6 | elin2d | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 78 | ssfi | ⊢ ( ( 𝑈 ∈ Fin ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ∈ Fin ) | |
| 79 | 77 24 78 | sylancl | ⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
| 80 | 79 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝑇 ∈ Fin ) |
| 81 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐾 : ℕ ⟶ 𝑇 ) |
| 82 | 2fveq3 | ⊢ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) | |
| 83 | 82 | fveq2d | ⊢ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) |
| 84 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝜑 ) | |
| 85 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑖 ∈ ℕ ) | |
| 86 | ral0 | ⊢ ∀ 𝑚 ∈ ∅ 𝑛 ≤ 𝑚 | |
| 87 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑊 = ∅ ) | |
| 88 | 87 | raleqdv | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ↔ ∀ 𝑚 ∈ ∅ 𝑛 ≤ 𝑚 ) ) |
| 89 | 86 88 | mpbiri | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) |
| 90 | 89 | ralrimivw | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) |
| 91 | rabid2 | ⊢ ( ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ↔ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) | |
| 92 | 90 91 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 93 | 85 92 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 94 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑗 ∈ ℕ ) | |
| 95 | 94 92 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 96 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ovolicc2lem3 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ∧ 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) ) → ( 𝑖 = 𝑗 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) |
| 97 | 84 93 95 96 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑖 = 𝑗 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) |
| 98 | 83 97 | imbitrrid | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 99 | 98 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℕ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 100 | dff13 | ⊢ ( 𝐾 : ℕ –1-1→ 𝑇 ↔ ( 𝐾 : ℕ ⟶ 𝑇 ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℕ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) | |
| 101 | 81 99 100 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐾 : ℕ –1-1→ 𝑇 ) |
| 102 | f1domg | ⊢ ( 𝑇 ∈ Fin → ( 𝐾 : ℕ –1-1→ 𝑇 → ℕ ≼ 𝑇 ) ) | |
| 103 | 80 101 102 | sylc | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ℕ ≼ 𝑇 ) |
| 104 | domfi | ⊢ ( ( 𝑇 ∈ Fin ∧ ℕ ≼ 𝑇 ) → ℕ ∈ Fin ) | |
| 105 | 79 103 104 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ℕ ∈ Fin ) |
| 106 | 105 | ex | ⊢ ( 𝜑 → ( 𝑊 = ∅ → ℕ ∈ Fin ) ) |
| 107 | 106 | necon3bd | ⊢ ( 𝜑 → ( ¬ ℕ ∈ Fin → 𝑊 ≠ ∅ ) ) |
| 108 | 76 107 | mpi | ⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
| 109 | infssuzcl | ⊢ ( ( 𝑊 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑊 ≠ ∅ ) → inf ( 𝑊 , ℝ , < ) ∈ 𝑊 ) | |
| 110 | 75 108 109 | sylancr | ⊢ ( 𝜑 → inf ( 𝑊 , ℝ , < ) ∈ 𝑊 ) |
| 111 | 17 110 | eqeltrid | ⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
| 112 | 74 111 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 113 | 112 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑀 ∈ ℝ ) |
| 114 | 74 | sseli | ⊢ ( 𝑚 ∈ 𝑊 → 𝑚 ∈ ℝ ) |
| 115 | 114 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑚 ∈ ℝ ) |
| 116 | elfzle2 | ⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ≤ 𝑀 ) | |
| 117 | 116 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ≤ 𝑀 ) |
| 118 | infssuzle | ⊢ ( ( 𝑊 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑚 ∈ 𝑊 ) → inf ( 𝑊 , ℝ , < ) ≤ 𝑚 ) | |
| 119 | 75 118 | mpan | ⊢ ( 𝑚 ∈ 𝑊 → inf ( 𝑊 , ℝ , < ) ≤ 𝑚 ) |
| 120 | 17 119 | eqbrtrid | ⊢ ( 𝑚 ∈ 𝑊 → 𝑀 ≤ 𝑚 ) |
| 121 | 120 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑀 ≤ 𝑚 ) |
| 122 | 72 113 115 117 121 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ≤ 𝑚 ) |
| 123 | 122 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) |
| 124 | 69 123 | ssrabdv | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ⊆ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 125 | 124 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( 1 ... 𝑀 ) ⊆ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 126 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) | |
| 127 | 125 126 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 128 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) | |
| 129 | 125 128 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 130 | 127 129 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ∧ 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) ) |
| 131 | 130 96 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑖 = 𝑗 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) |
| 132 | 68 131 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) ) |
| 133 | 67 132 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 134 | 133 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 135 | dff13 | ⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ ↔ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) | |
| 136 | 31 134 135 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ ) |
| 137 | f1f1orn | ⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) | |
| 138 | 136 137 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) |
| 139 | f1oeq3 | ⊢ ( ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) = ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ↔ ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) ) | |
| 140 | 20 139 | ax-mp | ⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ↔ ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) |
| 141 | 138 140 | sylibr | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) |
| 142 | f1ofo | ⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) | |
| 143 | 141 142 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) |
| 144 | fofi | ⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ∈ Fin ) | |
| 145 | 52 143 144 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ∈ Fin ) |
| 146 | fimaxre2 | ⊢ ( ( ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℝ ∧ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) | |
| 147 | 35 145 146 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) |
| 148 | 51 147 | r19.29a | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ℕ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) |
| 149 | 2 1 | resubcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 150 | 149 | rexrd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 151 | 150 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 152 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑧 ) ∈ Fin ) | |
| 153 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑧 ) → 𝑗 ∈ ℕ ) | |
| 154 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 155 | 154 | ovolfsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 156 | 5 155 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 157 | 156 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 158 | 153 157 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 159 | elrege0 | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) ) | |
| 160 | 158 159 | sylib | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) ) |
| 161 | 160 | simpld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 162 | 152 161 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 163 | 162 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 164 | 163 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ* ) |
| 165 | 154 4 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 166 | 5 165 | syl | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 167 | 166 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 168 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 169 | 167 168 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
| 170 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 171 | 169 170 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 172 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 173 | 171 172 | syl | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 174 | 173 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 175 | 149 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 176 | 33 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑗 ∈ ℕ ) |
| 177 | 168 157 | sselid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 178 | 176 177 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 179 | 145 178 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 180 | 179 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 181 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 182 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) | |
| 183 | 5 181 182 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 184 | 73 111 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 185 | 26 184 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐾 ‘ 𝑀 ) ∈ 𝑈 ) |
| 186 | 8 185 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ∈ ℕ ) |
| 187 | 183 186 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ∈ ( ℝ × ℝ ) ) |
| 188 | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ∈ ℝ ) | |
| 189 | 187 188 | syl | ⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ∈ ℝ ) |
| 190 | 24 14 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 191 | 8 190 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ℕ ) |
| 192 | 183 191 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ( ℝ × ℝ ) ) |
| 193 | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℝ ) | |
| 194 | 192 193 | syl | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 195 | 189 194 | resubcld | ⊢ ( 𝜑 → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 196 | fveq2 | ⊢ ( 𝑗 = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) | |
| 197 | 177 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 198 | 176 197 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 199 | 196 52 141 58 198 | fsumf1o | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) |
| 200 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐺 : 𝑈 ⟶ ℕ ) |
| 201 | ffvelcdm | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑈 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑈 ) | |
| 202 | 26 55 201 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑈 ) |
| 203 | 200 202 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ∈ ℕ ) |
| 204 | 154 | ovolfsval | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 205 | 5 203 204 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 206 | 205 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 207 | 183 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 208 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐺 : 𝑈 ⟶ ℕ ) |
| 209 | 26 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑈 ) |
| 210 | 208 209 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ∈ ℕ ) |
| 211 | 207 210 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) ) |
| 212 | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) | |
| 213 | 211 212 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 214 | 55 213 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 215 | 214 | recnd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 216 | 183 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 217 | 216 203 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) ) |
| 218 | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) | |
| 219 | 217 218 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 220 | 219 | recnd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 221 | 52 215 220 | fsumsub | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 222 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( 𝑀 − 1 ) ) ∈ Fin ) | |
| 223 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑖 ∈ ℕ ) | |
| 224 | 223 213 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 225 | 222 224 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 226 | 225 | recnd | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 227 | 189 | recnd | ⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ∈ ℂ ) |
| 228 | 75 111 | sselid | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 229 | 2fveq3 | ⊢ ( 𝑖 = 𝑀 → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) | |
| 230 | 229 | fveq2d | ⊢ ( 𝑖 = 𝑀 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) |
| 231 | 230 | fveq2d | ⊢ ( 𝑖 = 𝑀 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) |
| 232 | 228 215 231 | fsumm1 | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) + ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) |
| 233 | 226 227 232 | comraddd | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 234 | 2fveq3 | ⊢ ( 𝑖 = 1 → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) | |
| 235 | 234 | fveq2d | ⊢ ( 𝑖 = 1 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) |
| 236 | 235 | fveq2d | ⊢ ( 𝑖 = 1 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) ) |
| 237 | 228 220 236 | fsum1p | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 238 | 21 15 22 14 | algr0 | ⊢ ( 𝜑 → ( 𝐾 ‘ 1 ) = 𝐶 ) |
| 239 | 238 | fveq2d | ⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) = ( 𝐺 ‘ 𝐶 ) ) |
| 240 | 239 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
| 241 | 240 | fveq2d | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 242 | 22 | peano2zd | ⊢ ( 𝜑 → ( 1 + 1 ) ∈ ℤ ) |
| 243 | 184 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 244 | 1z | ⊢ 1 ∈ ℤ | |
| 245 | fzp1ss | ⊢ ( 1 ∈ ℤ → ( ( 1 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) ) | |
| 246 | 244 245 | mp1i | ⊢ ( 𝜑 → ( ( 1 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) ) |
| 247 | 246 | sselda | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 248 | 247 220 | syldan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 249 | 2fveq3 | ⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 250 | 249 | fveq2d | ⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 251 | 250 | fveq2d | ⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 252 | 22 242 243 248 251 | fsumshftm | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = Σ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 253 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 254 | 253 253 | pncan3oi | ⊢ ( ( 1 + 1 ) − 1 ) = 1 |
| 255 | 254 | oveq1i | ⊢ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) = ( 1 ... ( 𝑀 − 1 ) ) |
| 256 | 255 | sumeq1i | ⊢ Σ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 257 | fvoveq1 | ⊢ ( 𝑗 = 𝑖 → ( 𝐾 ‘ ( 𝑗 + 1 ) ) = ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) | |
| 258 | 257 | fveq2d | ⊢ ( 𝑗 = 𝑖 → ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) |
| 259 | 258 | fveq2d | ⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 260 | 259 | fveq2d | ⊢ ( 𝑗 = 𝑖 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 261 | 260 | cbvsumv | ⊢ Σ 𝑗 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 262 | 256 261 | eqtri | ⊢ Σ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 263 | 252 262 | eqtrdi | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 264 | 241 263 | oveq12d | ⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 265 | 237 264 | eqtrd | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 266 | 233 265 | oveq12d | ⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) − ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 267 | 194 | recnd | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 268 | peano2nn | ⊢ ( 𝑖 ∈ ℕ → ( 𝑖 + 1 ) ∈ ℕ ) | |
| 269 | ffvelcdm | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑈 ∧ ( 𝑖 + 1 ) ∈ ℕ ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) | |
| 270 | 26 268 269 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) |
| 271 | 208 270 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ∈ ℕ ) |
| 272 | 207 271 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ℝ × ℝ ) ) |
| 273 | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) | |
| 274 | 272 273 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) |
| 275 | 223 274 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) |
| 276 | 222 275 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) |
| 277 | 276 | recnd | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℂ ) |
| 278 | 227 226 267 277 | addsub4d | ⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) − ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 279 | 221 266 278 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 280 | 199 206 279 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 281 | 280 179 | eqeltrrd | ⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ∈ ℝ ) |
| 282 | fveq2 | ⊢ ( 𝑛 = 𝑀 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑀 ) ) | |
| 283 | 282 | eleq2d | ⊢ ( 𝑛 = 𝑀 → ( 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) ) |
| 284 | 283 16 | elrab2 | ⊢ ( 𝑀 ∈ 𝑊 ↔ ( 𝑀 ∈ ℕ ∧ 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) ) |
| 285 | 111 284 | sylib | ⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) ) |
| 286 | 285 | simprd | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) |
| 287 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝑀 ) ∈ 𝑈 ) → ( 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) ) |
| 288 | 185 287 | mpdan | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) ) |
| 289 | 286 288 | mpbid | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) |
| 290 | 289 | simp3d | ⊢ ( 𝜑 → 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) |
| 291 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑈 ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ∧ 𝐴 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) ) |
| 292 | 190 291 | mpdan | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ∧ 𝐴 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) ) |
| 293 | 13 292 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ∧ 𝐴 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 294 | 293 | simp2d | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ) |
| 295 | 2 194 189 1 290 294 | lt2subd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) < ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 296 | 149 195 295 | ltled | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 297 | 223 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℕ ) |
| 298 | simpr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) | |
| 299 | 243 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 300 | elfzm11 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ↔ ( 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) ) | |
| 301 | 244 299 300 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ↔ ( 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) ) |
| 302 | 298 301 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) |
| 303 | 302 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 304 | 297 | nnred | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 305 | 112 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 306 | 304 305 | ltnled | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑖 ) ) |
| 307 | 303 306 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀 ≤ 𝑖 ) |
| 308 | infssuzle | ⊢ ( ( 𝑊 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑖 ∈ 𝑊 ) → inf ( 𝑊 , ℝ , < ) ≤ 𝑖 ) | |
| 309 | 75 308 | mpan | ⊢ ( 𝑖 ∈ 𝑊 → inf ( 𝑊 , ℝ , < ) ≤ 𝑖 ) |
| 310 | 17 309 | eqbrtrid | ⊢ ( 𝑖 ∈ 𝑊 → 𝑀 ≤ 𝑖 ) |
| 311 | 307 310 | nsyl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑖 ∈ 𝑊 ) |
| 312 | 297 311 | jca | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊 ) ) |
| 313 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ovolicc2lem2 | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 ) |
| 314 | 312 313 | syldan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 ) |
| 315 | 314 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 316 | 2fveq3 | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) | |
| 317 | 316 | fveq2d | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 318 | 317 | breq1d | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 ) ) |
| 319 | 318 317 | ifbieq1d | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) ) |
| 320 | fveq2 | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( 𝐻 ‘ 𝑡 ) = ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | |
| 321 | 319 320 | eleq12d | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) |
| 322 | 12 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) |
| 323 | 322 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) |
| 324 | ffvelcdm | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑇 ) | |
| 325 | 23 223 324 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑇 ) |
| 326 | 321 323 325 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 327 | 315 326 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 328 | 21 15 22 14 11 | algrp1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) = ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 329 | 223 328 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) = ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 330 | 327 329 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) |
| 331 | 223 270 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) |
| 332 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 333 | 331 332 | syldan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 334 | 330 333 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 335 | 334 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 336 | 275 224 335 | ltled | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 337 | 222 275 224 336 | fsumle | ⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 338 | 225 276 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ↔ Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 339 | 337 338 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 340 | 225 276 | resubcld | ⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ∈ ℝ ) |
| 341 | 195 340 | addge01d | ⊢ ( 𝜑 → ( 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ↔ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ≤ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) ) |
| 342 | 339 341 | mpbid | ⊢ ( 𝜑 → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ≤ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 343 | 149 195 281 296 342 | letrd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 344 | 343 280 | breqtrrd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 345 | 344 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 346 | fzfid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 1 ... 𝑧 ) ∈ Fin ) | |
| 347 | 161 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 348 | 160 | simprd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 349 | 348 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 350 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℕ ) |
| 351 | 350 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ℕ ) |
| 352 | 351 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ℝ ) |
| 353 | 40 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑧 ∈ ℝ ) |
| 354 | ltle | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 < 𝑧 → 𝑦 ≤ 𝑧 ) ) | |
| 355 | 352 353 354 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 < 𝑧 → 𝑦 ≤ 𝑧 ) ) |
| 356 | 351 21 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
| 357 | nnz | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) | |
| 358 | 357 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑧 ∈ ℤ ) |
| 359 | elfz5 | ⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑧 ∈ ℤ ) → ( 𝑦 ∈ ( 1 ... 𝑧 ) ↔ 𝑦 ≤ 𝑧 ) ) | |
| 360 | 356 358 359 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑧 ) ↔ 𝑦 ≤ 𝑧 ) ) |
| 361 | 355 360 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 < 𝑧 → 𝑦 ∈ ( 1 ... 𝑧 ) ) ) |
| 362 | 361 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ∈ ( 1 ... 𝑧 ) ) ) |
| 363 | 362 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ∈ ( 1 ... 𝑧 ) ) |
| 364 | dfss3 | ⊢ ( ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ( 1 ... 𝑧 ) ↔ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ∈ ( 1 ... 𝑧 ) ) | |
| 365 | 363 364 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ( 1 ... 𝑧 ) ) |
| 366 | 346 347 349 365 | fsumless | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 367 | 175 180 163 345 366 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 368 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) | |
| 369 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → 𝑧 ∈ ℕ ) | |
| 370 | 369 21 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → 𝑧 ∈ ( ℤ≥ ‘ 1 ) ) |
| 371 | 347 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 372 | 368 370 371 | fsumser | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑧 ) ) |
| 373 | 4 | fveq1i | ⊢ ( 𝑆 ‘ 𝑧 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑧 ) |
| 374 | 372 373 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( 𝑆 ‘ 𝑧 ) ) |
| 375 | 166 | ffnd | ⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 376 | fnfvelrn | ⊢ ( ( 𝑆 Fn ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑆 ‘ 𝑧 ) ∈ ran 𝑆 ) | |
| 377 | 375 369 376 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝑆 ‘ 𝑧 ) ∈ ran 𝑆 ) |
| 378 | supxrub | ⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ 𝑧 ) ∈ ran 𝑆 ) → ( 𝑆 ‘ 𝑧 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) | |
| 379 | 171 377 378 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝑆 ‘ 𝑧 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 380 | 374 379 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 381 | 151 164 174 367 380 | xrletrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 382 | 148 381 | rexlimddv | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |