This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfz5 | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐾 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) | |
| 2 | eluzel2 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 4 | elfz | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 6 | 3 5 | sylan | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 7 | eluzle | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝐾 ) | |
| 8 | 7 | biantrurd | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ≤ 𝑁 ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ≤ 𝑁 ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 10 | 6 9 | bitr4d | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐾 ≤ 𝑁 ) ) |