This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ovolicc2.m | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | ||
| Assertion | ovolicc2 | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | ovolicc2.m | ⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 5 | 4 | elovolm | ⊢ ( 𝑧 ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 6 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) | |
| 7 | unieq | ⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ∪ 𝑢 = ∪ ran ( (,) ∘ 𝑓 ) ) | |
| 8 | 7 | sseq2d | ⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ↔ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
| 9 | pweq | ⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → 𝒫 𝑢 = 𝒫 ran ( (,) ∘ 𝑓 ) ) | |
| 10 | 9 | ineq1d | ⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( 𝒫 𝑢 ∩ Fin ) = ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ) |
| 11 | 10 | rexeqdv | ⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 12 | 8 11 | imbi12d | ⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ↔ ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) ) |
| 13 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 14 | eqid | ⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 15 | 13 14 | icccmp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 16 | 1 2 15 | syl2anc | ⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 17 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 18 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 19 | 1 2 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 20 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 21 | 20 | cmpsub | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) ) |
| 22 | 17 19 21 | sylancr | ⊢ ( 𝜑 → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) ) |
| 23 | 16 22 | mpbid | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 25 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 26 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 27 | 25 26 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 28 | dffn3 | ⊢ ( (,) Fn ( ℝ* × ℝ* ) ↔ (,) : ( ℝ* × ℝ* ) ⟶ ran (,) ) | |
| 29 | 27 28 | mpbi | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ ran (,) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 31 | elovolmlem | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 32 | 30 31 | sylib | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 33 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 34 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 35 | 33 34 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 36 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 37 | 32 35 36 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 38 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ ran (,) ∧ 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) ) | |
| 39 | 29 37 38 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) ) |
| 40 | 39 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) ) |
| 41 | 40 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ⊆ ran (,) ) |
| 42 | retopbas | ⊢ ran (,) ∈ TopBases | |
| 43 | bastg | ⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) | |
| 44 | 42 43 | ax-mp | ⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 45 | 41 44 | sstrdi | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 46 | fvex | ⊢ ( topGen ‘ ran (,) ) ∈ V | |
| 47 | 46 | elpw2 | ⊢ ( ran ( (,) ∘ 𝑓 ) ∈ 𝒫 ( topGen ‘ ran (,) ) ↔ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 48 | 45 47 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ∈ 𝒫 ( topGen ‘ ran (,) ) ) |
| 49 | 12 24 48 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 50 | 6 49 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) |
| 51 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ) | |
| 52 | elin | ⊢ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ↔ ( 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 ∈ Fin ) ) | |
| 53 | 51 52 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 ∈ Fin ) ) |
| 54 | 53 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ Fin ) |
| 55 | 53 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ) |
| 56 | 55 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ⊆ ran ( (,) ∘ 𝑓 ) ) |
| 57 | 56 | sseld | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑡 ∈ 𝑣 → 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ) ) |
| 58 | 39 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( (,) ∘ 𝑓 ) Fn ℕ ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( (,) ∘ 𝑓 ) Fn ℕ ) |
| 60 | fvelrnb | ⊢ ( ( (,) ∘ 𝑓 ) Fn ℕ → ( 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ↔ ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ↔ ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) ) |
| 62 | 57 61 | sylibd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑡 ∈ 𝑣 → ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) ) |
| 63 | 62 | ralrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ∀ 𝑡 ∈ 𝑣 ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) |
| 64 | fveqeq2 | ⊢ ( 𝑘 = ( 𝑔 ‘ 𝑡 ) → ( ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ↔ ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) | |
| 65 | 64 | ac6sfi | ⊢ ( ( 𝑣 ∈ Fin ∧ ∀ 𝑡 ∈ 𝑣 ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) → ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) |
| 66 | 54 63 65 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) |
| 67 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝐴 ∈ ℝ ) |
| 68 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝐵 ∈ ℝ ) |
| 69 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝐴 ≤ 𝐵 ) |
| 70 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 71 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 72 | simprll | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ) | |
| 73 | simprlr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) | |
| 74 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝑔 : 𝑣 ⟶ ℕ ) | |
| 75 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) | |
| 76 | 2fveq3 | ⊢ ( 𝑡 = 𝑥 → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 77 | id | ⊢ ( 𝑡 = 𝑥 → 𝑡 = 𝑥 ) | |
| 78 | 76 77 | eqeq12d | ⊢ ( 𝑡 = 𝑥 → ( ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ↔ ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) = 𝑥 ) ) |
| 79 | 78 | rspccva | ⊢ ( ( ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ∧ 𝑥 ∈ 𝑣 ) → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) = 𝑥 ) |
| 80 | 75 79 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) ∧ 𝑥 ∈ 𝑣 ) → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) = 𝑥 ) |
| 81 | eqid | ⊢ { 𝑢 ∈ 𝑣 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } = { 𝑢 ∈ 𝑣 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } | |
| 82 | 67 68 69 70 71 72 73 74 80 81 | ovolicc2lem5 | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 83 | 82 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 84 | 83 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 85 | 66 84 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 86 | 85 | rexlimdvaa | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 87 | 86 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 88 | 50 87 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 89 | breq2 | ⊢ ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( ( 𝐵 − 𝐴 ) ≤ 𝑧 ↔ ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) | |
| 90 | 88 89 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 91 | 90 | expr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) ) |
| 92 | 91 | impd | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 93 | 92 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 94 | 5 93 | biimtrid | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑀 → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 95 | 94 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑀 ( 𝐵 − 𝐴 ) ≤ 𝑧 ) |
| 96 | 4 | ssrab3 | ⊢ 𝑀 ⊆ ℝ* |
| 97 | 2 1 | resubcld | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 98 | 97 | rexrd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 99 | infxrgelb | ⊢ ( ( 𝑀 ⊆ ℝ* ∧ ( 𝐵 − 𝐴 ) ∈ ℝ* ) → ( ( 𝐵 − 𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) | |
| 100 | 96 98 99 | sylancr | ⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 101 | 95 100 | mpbird | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ) |
| 102 | 4 | ovolval | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = inf ( 𝑀 , ℝ* , < ) ) |
| 103 | 19 102 | syl | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = inf ( 𝑀 , ℝ* , < ) ) |
| 104 | 101 103 | breqtrrd | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |