This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | ||
| fsumless.4 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| Assertion | fsumless | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumge0.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | fsumge0.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) | |
| 4 | fsumless.4 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 5 | difss | ⊢ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐴 | |
| 6 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∖ 𝐶 ) ⊆ 𝐴 ) → ( 𝐴 ∖ 𝐶 ) ∈ Fin ) | |
| 7 | 1 5 6 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐶 ) ∈ Fin ) |
| 8 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑘 ∈ 𝐴 ) | |
| 9 | 8 2 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → 𝐵 ∈ ℝ ) |
| 10 | 8 3 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → 0 ≤ 𝐵 ) |
| 11 | 7 9 10 | fsumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) |
| 12 | 1 4 | ssfid | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
| 13 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝑘 ∈ 𝐴 ) |
| 14 | 13 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
| 15 | 12 14 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ∈ ℝ ) |
| 16 | 7 9 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ∈ ℝ ) |
| 17 | 15 16 | addge01d | ⊢ ( 𝜑 → ( 0 ≤ Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ↔ Σ 𝑘 ∈ 𝐶 𝐵 ≤ ( Σ 𝑘 ∈ 𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) ) ) |
| 18 | 11 17 | mpbid | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ≤ ( Σ 𝑘 ∈ 𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) ) |
| 19 | disjdif | ⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → ( 𝐶 ∩ ( 𝐴 ∖ 𝐶 ) ) = ∅ ) |
| 21 | undif | ⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∪ ( 𝐴 ∖ 𝐶 ) ) = 𝐴 ) | |
| 22 | 4 21 | sylib | ⊢ ( 𝜑 → ( 𝐶 ∪ ( 𝐴 ∖ 𝐶 ) ) = 𝐴 ) |
| 23 | 22 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ ( 𝐴 ∖ 𝐶 ) ) ) |
| 24 | 2 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 25 | 20 23 1 24 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = ( Σ 𝑘 ∈ 𝐶 𝐵 + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) 𝐵 ) ) |
| 26 | 18 25 | breqtrrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐶 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐵 ) |