This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ovolicc2.4 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ovolicc2.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| ovolicc2.6 | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) | ||
| ovolicc2.7 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | ||
| ovolicc2.8 | ⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) | ||
| ovolicc2.9 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) | ||
| ovolicc2.10 | ⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } | ||
| Assertion | ovolicc2lem5 | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | ovolicc2.4 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 5 | ovolicc2.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 6 | ovolicc2.6 | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) | |
| 7 | ovolicc2.7 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | |
| 8 | ovolicc2.8 | ⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) | |
| 9 | ovolicc2.9 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) | |
| 10 | ovolicc2.10 | ⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } | |
| 11 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 12 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 13 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 14 | 11 12 3 13 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 15 | 7 14 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑈 ) |
| 16 | eluni2 | ⊢ ( 𝐴 ∈ ∪ 𝑈 ↔ ∃ 𝑧 ∈ 𝑈 𝐴 ∈ 𝑧 ) | |
| 17 | 15 16 | sylib | ⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑈 𝐴 ∈ 𝑧 ) |
| 18 | 6 | elin2d | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 19 | 10 | ssrab3 | ⊢ 𝑇 ⊆ 𝑈 |
| 20 | ssfi | ⊢ ( ( 𝑈 ∈ Fin ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ∈ Fin ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
| 22 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 23 | ineq1 | ⊢ ( 𝑢 = 𝑡 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 24 | 23 | neeq1d | ⊢ ( 𝑢 = 𝑡 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 25 | 24 10 | elrab2 | ⊢ ( 𝑡 ∈ 𝑇 ↔ ( 𝑡 ∈ 𝑈 ∧ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 26 | 25 | simplbi | ⊢ ( 𝑡 ∈ 𝑇 → 𝑡 ∈ 𝑈 ) |
| 27 | ffvelcdm | ⊢ ( ( 𝐺 : 𝑈 ⟶ ℕ ∧ 𝑡 ∈ 𝑈 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) | |
| 28 | 8 26 27 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) |
| 29 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 30 | 28 29 | syldan | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 31 | 30 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) ) |
| 32 | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 34 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐵 ∈ ℝ ) |
| 35 | 33 34 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ) |
| 36 | 25 | simprbi | ⊢ ( 𝑡 ∈ 𝑇 → ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
| 38 | n0 | ⊢ ( ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 40 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 41 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 42 | 41 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 43 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 44 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) | |
| 45 | 1 43 44 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 46 | 42 45 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 47 | 46 | simp1d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ℝ ) |
| 48 | 31 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) ) |
| 49 | 48 32 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 50 | 46 | simp2d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ≤ 𝑦 ) |
| 51 | 41 | elin1d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ 𝑡 ) |
| 52 | 28 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) |
| 53 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | |
| 54 | 5 52 53 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 55 | 26 9 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
| 56 | 55 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
| 57 | 1st2nd2 | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) = 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) | |
| 58 | 48 57 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) = 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) |
| 59 | 58 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) ) |
| 60 | df-ov | ⊢ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) | |
| 61 | 59 60 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
| 62 | 54 56 61 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑡 = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
| 63 | 51 62 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
| 64 | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) | |
| 65 | 48 64 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 66 | rexr | ⊢ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ) | |
| 67 | rexr | ⊢ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ) | |
| 68 | elioo2 | ⊢ ( ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) | |
| 69 | 66 67 68 | syl2an | ⊢ ( ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) |
| 70 | 65 49 69 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) |
| 71 | 63 70 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
| 72 | 71 | simp3d | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 73 | 47 49 72 | ltled | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 74 | 40 47 49 50 73 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 75 | 74 | expr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
| 76 | 75 | exlimdv | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
| 77 | 39 76 | mpd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 78 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ≤ 𝐵 ) |
| 79 | breq2 | ⊢ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) → ( 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ↔ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) ) | |
| 80 | breq2 | ⊢ ( 𝐵 = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) ) | |
| 81 | 79 80 | ifboth | ⊢ ( ( 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) |
| 82 | 77 78 81 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) |
| 83 | min2 | ⊢ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) | |
| 84 | 33 34 83 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) |
| 85 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) ) | |
| 86 | 1 2 85 | syl2anc | ⊢ ( 𝜑 → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) ) |
| 88 | 35 82 84 87 | mpbir3and | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 89 | 22 88 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ∪ 𝑈 ) |
| 90 | eluni2 | ⊢ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ∪ 𝑈 ↔ ∃ 𝑥 ∈ 𝑈 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) | |
| 91 | 89 90 | sylib | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑥 ∈ 𝑈 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
| 92 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝑈 ) | |
| 93 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) | |
| 94 | 88 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 95 | inelcm | ⊢ ( ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) | |
| 96 | 93 94 95 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
| 97 | ineq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 98 | 97 | neeq1d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 99 | 98 10 | elrab2 | ⊢ ( 𝑥 ∈ 𝑇 ↔ ( 𝑥 ∈ 𝑈 ∧ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 100 | 92 96 99 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝑇 ) |
| 101 | 91 100 93 | reximssdv | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
| 102 | 101 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ∃ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
| 103 | eleq2 | ⊢ ( 𝑥 = ( ℎ ‘ 𝑡 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) | |
| 104 | 103 | ac6sfi | ⊢ ( ( 𝑇 ∈ Fin ∧ ∀ 𝑡 ∈ 𝑇 ∃ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) → ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
| 105 | 21 102 104 | syl2anc | ⊢ ( 𝜑 → ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
| 106 | 105 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
| 107 | 2fveq3 | ⊢ ( 𝑥 = 𝑡 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) | |
| 108 | 107 | fveq2d | ⊢ ( 𝑥 = 𝑡 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
| 109 | 108 | breq1d | ⊢ ( 𝑥 = 𝑡 → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 ) ) |
| 110 | 109 108 | ifbieq1d | ⊢ ( 𝑥 = 𝑡 → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) |
| 111 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑡 ) ) | |
| 112 | 110 111 | eleq12d | ⊢ ( 𝑥 = 𝑡 → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
| 113 | 112 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ↔ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) |
| 114 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 115 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 116 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ≤ 𝐵 ) |
| 117 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 118 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) |
| 119 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 120 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐺 : 𝑈 ⟶ ℕ ) |
| 121 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
| 122 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ℎ : 𝑇 ⟶ 𝑇 ) | |
| 123 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) | |
| 124 | 112 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) |
| 125 | 123 124 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) |
| 126 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ∈ 𝑧 ) | |
| 127 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝑧 ∈ 𝑈 ) | |
| 128 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 129 | inelcm | ⊢ ( ( 𝐴 ∈ 𝑧 ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) | |
| 130 | 126 128 129 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
| 131 | ineq1 | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 132 | 131 | neeq1d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 133 | 132 10 | elrab2 | ⊢ ( 𝑧 ∈ 𝑇 ↔ ( 𝑧 ∈ 𝑈 ∧ ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 134 | 127 130 133 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝑧 ∈ 𝑇 ) |
| 135 | eqid | ⊢ seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) = seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) | |
| 136 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) = ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) ) | |
| 137 | 136 | eleq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) ↔ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) ) ) |
| 138 | 137 | cbvrabv | ⊢ { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) } |
| 139 | eqid | ⊢ inf ( { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } , ℝ , < ) = inf ( { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } , ℝ , < ) | |
| 140 | 114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139 | ovolicc2lem4 | ⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 141 | 140 | anassrs | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 142 | 141 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ℎ : 𝑇 ⟶ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 143 | 113 142 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ℎ : 𝑇 ⟶ 𝑇 ) → ( ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 144 | 143 | expimpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ( ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 145 | 144 | exlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ( ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
| 146 | 106 145 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 147 | 17 146 | rexlimddv | ⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |