This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| ovolicc2.4 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ovolicc2.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| ovolicc2.6 | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) | ||
| ovolicc2.7 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | ||
| ovolicc2.8 | ⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) | ||
| ovolicc2.9 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) | ||
| ovolicc2.10 | ⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } | ||
| ovolicc2.11 | ⊢ ( 𝜑 → 𝐻 : 𝑇 ⟶ 𝑇 ) | ||
| ovolicc2.12 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) | ||
| ovolicc2.13 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| ovolicc2.14 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | ||
| ovolicc2.15 | ⊢ 𝐾 = seq 1 ( ( 𝐻 ∘ 1st ) , ( ℕ × { 𝐶 } ) ) | ||
| ovolicc2.16 | ⊢ 𝑊 = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) } | ||
| Assertion | ovolicc2lem2 | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 ∈ 𝑊 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ovolicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ovolicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | ovolicc2.4 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 5 | ovolicc2.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 6 | ovolicc2.6 | ⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) | |
| 7 | ovolicc2.7 | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) | |
| 8 | ovolicc2.8 | ⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) | |
| 9 | ovolicc2.9 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) | |
| 10 | ovolicc2.10 | ⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } | |
| 11 | ovolicc2.11 | ⊢ ( 𝜑 → 𝐻 : 𝑇 ⟶ 𝑇 ) | |
| 12 | ovolicc2.12 | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) | |
| 13 | ovolicc2.13 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 14 | ovolicc2.14 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | |
| 15 | ovolicc2.15 | ⊢ 𝐾 = seq 1 ( ( 𝐻 ∘ 1st ) , ( ℕ × { 𝐶 } ) ) | |
| 16 | ovolicc2.16 | ⊢ 𝑊 = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) } | |
| 17 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 18 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 19 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) | |
| 20 | 5 18 19 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 22 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐺 : 𝑈 ⟶ ℕ ) |
| 23 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 24 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 25 | 23 15 24 14 11 | algrf | ⊢ ( 𝜑 → 𝐾 : ℕ ⟶ 𝑇 ) |
| 26 | 25 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ‘ 𝑁 ) ∈ 𝑇 ) |
| 27 | ineq1 | ⊢ ( 𝑢 = ( 𝐾 ‘ 𝑁 ) → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 28 | 27 | neeq1d | ⊢ ( 𝑢 = ( 𝐾 ‘ 𝑁 ) → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 29 | 28 10 | elrab2 | ⊢ ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑇 ↔ ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 30 | 26 29 | sylib | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 31 | 30 | simpld | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) |
| 32 | 22 31 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ∈ ℕ ) |
| 33 | 21 32 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ∈ ( ℝ × ℝ ) ) |
| 34 | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
| 36 | 17 35 | ltnled | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ↔ ¬ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 ) ) |
| 37 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝑁 ∈ ℕ ) | |
| 38 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝐵 ∈ ℝ ) |
| 39 | 30 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
| 40 | 39 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
| 41 | n0 | ⊢ ( ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 42 | 40 41 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ∃ 𝑥 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 43 | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) | |
| 44 | 33 43 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
| 45 | 44 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 48 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 49 | 47 48 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 50 | 49 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 51 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 52 | 1 2 51 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 54 | 50 53 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 55 | 54 | simp1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
| 56 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 57 | 49 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ) |
| 58 | 39 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) |
| 59 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
| 60 | 58 59 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
| 62 | 57 61 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) |
| 63 | 62 | simp2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ) |
| 64 | 54 | simp3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ≤ 𝐵 ) |
| 65 | 46 55 56 63 64 | ltletrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ) |
| 66 | 42 65 | exlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ) |
| 67 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) | |
| 68 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) → ( 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
| 69 | 58 68 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
| 70 | 38 66 67 69 | mpbir3and | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ) |
| 71 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑁 ) ) | |
| 72 | 71 | eleq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ) ) |
| 73 | 72 16 | elrab2 | ⊢ ( 𝑁 ∈ 𝑊 ↔ ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ) ) |
| 74 | 37 70 73 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝑁 ∈ 𝑊 ) |
| 75 | 74 | expr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) → 𝑁 ∈ 𝑊 ) ) |
| 76 | 36 75 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ¬ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 → 𝑁 ∈ 𝑊 ) ) |
| 77 | 76 | con1d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑁 ∈ 𝑊 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 ) ) |
| 78 | 77 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 ∈ 𝑊 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 ) |