This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of Suppes p. 104. (Contributed by NM, 25-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fofi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodomfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≼ 𝐴 ) | |
| 2 | domfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 3 | 1 2 | syldan | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ Fin ) |