This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of Apostol p. 26. (Contributed by NM, 21-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | arch | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝐴 < 𝑛 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 < 𝑛 ↔ 𝐴 < 𝑛 ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ↔ ∃ 𝑛 ∈ ℕ 𝐴 < 𝑛 ) ) |
| 3 | nnunb | ⊢ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) | |
| 4 | ralnex | ⊢ ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ↔ ¬ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) | |
| 5 | 3 4 | mpbir | ⊢ ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) |
| 6 | rexnal | ⊢ ( ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ↔ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) | |
| 7 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 8 | axlttri | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑦 < 𝑛 ↔ ¬ ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑦 < 𝑛 ↔ ¬ ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ) ) |
| 10 | equcom | ⊢ ( 𝑦 = 𝑛 ↔ 𝑛 = 𝑦 ) | |
| 11 | 10 | orbi1i | ⊢ ( ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ↔ ( 𝑛 = 𝑦 ∨ 𝑛 < 𝑦 ) ) |
| 12 | orcom | ⊢ ( ( 𝑛 = 𝑦 ∨ 𝑛 < 𝑦 ) ↔ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ↔ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) |
| 14 | 13 | notbii | ⊢ ( ¬ ( 𝑦 = 𝑛 ∨ 𝑛 < 𝑦 ) ↔ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) |
| 15 | 9 14 | bitrdi | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑦 < 𝑛 ↔ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) ) ) |
| 16 | 15 | biimprd | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → 𝑦 < 𝑛 ) ) |
| 17 | 16 | reximdva | ⊢ ( 𝑦 ∈ ℝ → ( ∃ 𝑛 ∈ ℕ ¬ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ) ) |
| 18 | 6 17 | biimtrrid | ⊢ ( 𝑦 ∈ ℝ → ( ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ) ) |
| 19 | 18 | ralimia | ⊢ ( ∀ 𝑦 ∈ ℝ ¬ ∀ 𝑛 ∈ ℕ ( 𝑛 < 𝑦 ∨ 𝑛 = 𝑦 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 ) |
| 20 | 5 19 | ax-mp | ⊢ ∀ 𝑦 ∈ ℝ ∃ 𝑛 ∈ ℕ 𝑦 < 𝑛 |
| 21 | 2 20 | vtoclri | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝐴 < 𝑛 ) |