This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law. (Contributed by NM, 23-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 3 | lttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) | |
| 4 | 3 | expd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) ) |
| 5 | breq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 < 𝐶 ↔ 𝐵 < 𝐶 ) ) | |
| 6 | 5 | biimprd | ⊢ ( 𝐴 = 𝐵 → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 = 𝐵 → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) ) |
| 8 | 4 7 | jaod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) ) |
| 9 | 2 8 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐵 < 𝐶 → 𝐴 < 𝐶 ) ) ) |
| 10 | 9 | impd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) |