This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011) (Revised by Mario Carneiro, 13-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimaxre2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | rzal | ⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 0 ) | |
| 3 | brralrspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 6 | fimaxre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 7 | 6 | 3expia | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 8 | ssrexv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 10 | 7 9 | syld | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 11 | 5 10 | pm2.61dne | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |