This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a finite set is finite. Corollary 6G of Enderton p. 138. For a shorter proof using ax-pow , see ssfiALT . (Contributed by NM, 24-Jun-1998) Avoid ax-pow . (Revised by BTernaryTau, 12-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐵 ∈ V ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 3 | sseq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) | |
| 4 | eleq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∈ Fin ↔ 𝐵 ∈ Fin ) ) | |
| 5 | 3 4 | imbi12d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ↔ ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ Fin → ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ↔ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) ) |
| 7 | sseq2 | ⊢ ( 𝑥 = ∅ → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ ∅ ) ) | |
| 8 | 7 | imbi1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) ) ) |
| 9 | 8 | albidv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) ) ) |
| 10 | sseq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝑦 ) ) | |
| 11 | 10 | imbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ) ) |
| 13 | sseq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 14 | 13 | imbi1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
| 15 | 14 | albidv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
| 16 | sseq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑏 ⊆ 𝑥 ↔ 𝑏 ⊆ 𝐴 ) ) | |
| 17 | 16 | imbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ) |
| 18 | 17 | albidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑥 → 𝑏 ∈ Fin ) ↔ ∀ 𝑏 ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) ) |
| 19 | ss0 | ⊢ ( 𝑏 ⊆ ∅ → 𝑏 = ∅ ) | |
| 20 | 0fi | ⊢ ∅ ∈ Fin | |
| 21 | 19 20 | eqeltrdi | ⊢ ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) |
| 22 | 21 | ax-gen | ⊢ ∀ 𝑏 ( 𝑏 ⊆ ∅ → 𝑏 ∈ Fin ) |
| 23 | sseq1 | ⊢ ( 𝑏 = 𝑐 → ( 𝑏 ⊆ 𝑦 ↔ 𝑐 ⊆ 𝑦 ) ) | |
| 24 | eleq1w | ⊢ ( 𝑏 = 𝑐 → ( 𝑏 ∈ Fin ↔ 𝑐 ∈ Fin ) ) | |
| 25 | 23 24 | imbi12d | ⊢ ( 𝑏 = 𝑐 → ( ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ↔ ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) ) |
| 26 | 25 | cbvalvw | ⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) ↔ ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) |
| 27 | simp1 | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ) | |
| 28 | snssi | ⊢ ( 𝑧 ∈ 𝑏 → { 𝑧 } ⊆ 𝑏 ) | |
| 29 | undif | ⊢ ( { 𝑧 } ⊆ 𝑏 ↔ ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = 𝑏 ) | |
| 30 | 28 29 | sylib | ⊢ ( 𝑧 ∈ 𝑏 → ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = 𝑏 ) |
| 31 | uncom | ⊢ ( { 𝑧 } ∪ ( 𝑏 ∖ { 𝑧 } ) ) = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) | |
| 32 | 30 31 | eqtr3di | ⊢ ( 𝑧 ∈ 𝑏 → 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
| 33 | uncom | ⊢ ( 𝑦 ∪ { 𝑧 } ) = ( { 𝑧 } ∪ 𝑦 ) | |
| 34 | 33 | sseq2i | ⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ↔ 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) |
| 35 | ssundif | ⊢ ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) | |
| 36 | 34 35 | sylbb | ⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) |
| 37 | 32 36 | anim12ci | ⊢ ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
| 38 | 37 | 3adant1 | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
| 39 | 3anass | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ↔ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) ) | |
| 40 | 27 38 39 | sylanbrc | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) ) |
| 41 | vex | ⊢ 𝑏 ∈ V | |
| 42 | 41 | difexi | ⊢ ( 𝑏 ∖ { 𝑧 } ) ∈ V |
| 43 | sseq1 | ⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( 𝑐 ⊆ 𝑦 ↔ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) ) | |
| 44 | eleq1 | ⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( 𝑐 ∈ Fin ↔ ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) | |
| 45 | 43 44 | imbi12d | ⊢ ( 𝑐 = ( 𝑏 ∖ { 𝑧 } ) → ( ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ↔ ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) ) |
| 46 | 42 45 | spcv | ⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ( ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) ) |
| 47 | 46 | imp | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) → ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ) |
| 48 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 49 | unfi | ⊢ ( ( ( 𝑏 ∖ { 𝑧 } ) ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) | |
| 50 | 47 48 49 | sylancl | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ) → ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) |
| 51 | eleq1 | ⊢ ( 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) → ( 𝑏 ∈ Fin ↔ ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ) ) | |
| 52 | 51 | biimparc | ⊢ ( ( ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ∈ Fin ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
| 53 | 50 52 | stoic3 | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ ( 𝑏 ∖ { 𝑧 } ) ⊆ 𝑦 ∧ 𝑏 = ( ( 𝑏 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
| 54 | 40 53 | syl | ⊢ ( ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) ∧ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) |
| 55 | 54 | 3expib | ⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 56 | 55 | alrimiv | ⊢ ( ∀ 𝑐 ( 𝑐 ⊆ 𝑦 → 𝑐 ∈ Fin ) → ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 57 | 26 56 | sylbi | ⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 58 | disjsn | ⊢ ( ( 𝑏 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑏 ) | |
| 59 | disjssun | ⊢ ( ( 𝑏 ∩ { 𝑧 } ) = ∅ → ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ 𝑏 ⊆ 𝑦 ) ) | |
| 60 | 58 59 | sylbir | ⊢ ( ¬ 𝑧 ∈ 𝑏 → ( 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ↔ 𝑏 ⊆ 𝑦 ) ) |
| 61 | 60 | biimpa | ⊢ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( { 𝑧 } ∪ 𝑦 ) ) → 𝑏 ⊆ 𝑦 ) |
| 62 | 34 61 | sylan2b | ⊢ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ⊆ 𝑦 ) |
| 63 | 62 | imim1i | ⊢ ( ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 64 | 63 | alimi | ⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) |
| 65 | exmid | ⊢ ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) | |
| 66 | 65 | jctl | ⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 67 | andir | ⊢ ( ( ( 𝑧 ∈ 𝑏 ∨ ¬ 𝑧 ∈ 𝑏 ) ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ↔ ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) ) | |
| 68 | 66 67 | sylib | ⊢ ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 69 | pm3.44 | ⊢ ( ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ∨ ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑏 ∈ Fin ) ) | |
| 70 | 68 69 | syl5 | ⊢ ( ( ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
| 71 | 70 | alanimi | ⊢ ( ( ∀ 𝑏 ( ( 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ∧ ∀ 𝑏 ( ( ¬ 𝑧 ∈ 𝑏 ∧ 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑏 ∈ Fin ) ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
| 72 | 57 64 71 | syl2anc | ⊢ ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) |
| 73 | 72 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑏 ( 𝑏 ⊆ 𝑦 → 𝑏 ∈ Fin ) → ∀ 𝑏 ( 𝑏 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑏 ∈ Fin ) ) ) |
| 74 | 9 12 15 18 22 73 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ∀ 𝑏 ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) |
| 75 | 74 | 19.21bi | ⊢ ( 𝐴 ∈ Fin → ( 𝑏 ⊆ 𝐴 → 𝑏 ∈ Fin ) ) |
| 76 | 6 75 | vtoclg | ⊢ ( 𝐵 ∈ V → ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
| 77 | 76 | impd | ⊢ ( 𝐵 ∈ V → ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) ) |
| 78 | 2 77 | mpcom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |