This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comraddd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| comraddd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| comraddd.3 | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 + 𝐶 ) ) | ||
| Assertion | comraddd | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comraddd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 2 | comraddd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 3 | comraddd.3 | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 + 𝐶 ) ) | |
| 4 | 1 2 | addcomd | ⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
| 5 | 3 4 | eqtrd | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 + 𝐵 ) ) |