This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrlttrd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| xrlttrd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| xrlttrd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| xrletrd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| xrletrd.5 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | ||
| Assertion | xrletrd | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttrd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | xrlttrd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | xrlttrd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 4 | xrletrd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | xrletrd.5 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) | |
| 6 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) | |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
| 8 | 4 5 7 | mp2and | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |