This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the algorithm iterator R at 0 is the initial state A . (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algrf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| algrf.2 | ⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) | ||
| algrf.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| algrf.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| Assertion | algr0 | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑀 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | algrf.2 | ⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) | |
| 3 | algrf.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | algrf.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 5 | 2 | fveq1i | ⊢ ( 𝑅 ‘ 𝑀 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) |
| 6 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) ) |
| 8 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 | 9 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 11 | fvconst2g | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) = 𝐴 ) | |
| 12 | 4 10 11 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) = 𝐴 ) |
| 13 | 7 12 | eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = 𝐴 ) |
| 14 | 5 13 | eqtrid | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑀 ) = 𝐴 ) |