This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumm1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| fsumm1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| fsumm1.3 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) | ||
| Assertion | fsumm1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumm1.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fsumm1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 3 | fsumm1.3 | ⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) | |
| 4 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 6 | fzsn | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) |
| 8 | 7 | ineq2d | ⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( 𝑁 ... 𝑁 ) ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) ) |
| 9 | 5 | zred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 10 | 9 | ltm1d | ⊢ ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 ) |
| 11 | fzdisj | ⊢ ( ( 𝑁 − 1 ) < 𝑁 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( 𝑁 ... 𝑁 ) ) = ∅ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( 𝑁 ... 𝑁 ) ) = ∅ ) |
| 13 | 8 12 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) |
| 14 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 15 | 1 14 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 16 | peano2zm | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
| 18 | 15 | zcnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 19 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 20 | npcan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 22 | 21 | fveq2d | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑀 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 23 | 1 22 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑀 − 1 ) + 1 ) ) ) |
| 24 | eluzp1m1 | ⊢ ( ( ( 𝑀 − 1 ) ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑀 − 1 ) + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) | |
| 25 | 17 23 24 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 26 | fzsuc2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) ) | |
| 27 | 15 25 26 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) ) |
| 28 | 5 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 29 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 30 | 28 19 29 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 31 | 30 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 32 | 27 31 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) |
| 33 | 30 | sneqd | ⊢ ( 𝜑 → { ( ( 𝑁 − 1 ) + 1 ) } = { 𝑁 } ) |
| 34 | 33 | uneq2d | ⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
| 35 | 32 34 | eqtr3d | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
| 36 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) | |
| 37 | 13 35 36 2 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ { 𝑁 } 𝐴 ) ) |
| 38 | 3 | eleq1d | ⊢ ( 𝑘 = 𝑁 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 39 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
| 40 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 41 | 1 40 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 42 | 38 39 41 | rspcdva | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 43 | 3 | sumsn | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑁 } 𝐴 = 𝐵 ) |
| 44 | 1 42 43 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑁 } 𝐴 = 𝐵 ) |
| 45 | 44 | oveq2d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ { 𝑁 } 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
| 46 | 37 45 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |