This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssrabdv.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| ssrabdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜓 ) | ||
| Assertion | ssrabdv | ⊢ ( 𝜑 → 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrabdv.1 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 2 | ssrabdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜓 ) | |
| 3 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |
| 4 | ssrab | ⊢ ( 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) | |
| 5 | 1 3 4 | sylanbrc | ⊢ ( 𝜑 → 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |