This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumle.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumle.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| fsumle.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | ||
| fsumle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | ||
| Assertion | fsumle | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumle.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumle.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | fsumle.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) | |
| 4 | fsumle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) | |
| 5 | 3 2 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) |
| 6 | 3 2 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 0 ≤ ( 𝐶 − 𝐵 ) ↔ 𝐵 ≤ 𝐶 ) ) |
| 7 | 4 6 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ ( 𝐶 − 𝐵 ) ) |
| 8 | 1 5 7 | fsumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) ) |
| 9 | 3 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 10 | 2 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 11 | 1 9 10 | fsumsub | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐶 − 𝐵 ) = ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 12 | 8 11 | breqtrd | ⊢ ( 𝜑 → 0 ≤ ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 13 | 1 3 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 ∈ ℝ ) |
| 14 | 1 2 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 15 | 13 14 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( Σ 𝑘 ∈ 𝐴 𝐶 − Σ 𝑘 ∈ 𝐴 𝐵 ) ↔ Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 16 | 12 15 | mpbid | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝐴 𝐶 ) |