This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006) (Revised by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domeng | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ≼ 𝐴 ↔ ∃ 𝑥 ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) | |
| 2 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 ∈ Fin ) | |
| 3 | 2 | adantrl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝑥 ∈ Fin ) |
| 4 | enfii | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≈ 𝑥 ) → 𝐵 ∈ Fin ) | |
| 5 | 4 | adantrr | ⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝐵 ∈ Fin ) |
| 6 | 3 5 | sylancom | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) → 𝐵 ∈ Fin ) |
| 7 | 6 | ex | ⊢ ( 𝐴 ∈ Fin → ( ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) ) |
| 8 | 7 | exlimdv | ⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑥 ( 𝐵 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) ) |
| 9 | 1 8 | sylbid | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ≼ 𝐴 → 𝐵 ∈ Fin ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ Fin ) |