This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infssuzle | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ∈ 𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( 𝐴 ∈ 𝑆 → 𝑆 ≠ ∅ ) | |
| 2 | uzwo | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ∈ 𝑆 ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
| 4 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 5 | zssre | ⊢ ℤ ⊆ ℝ | |
| 6 | 4 5 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 7 | sstr | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → 𝑆 ⊆ ℝ ) |
| 9 | lbinfle | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ∧ 𝐴 ∈ 𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) | |
| 10 | 9 | 3com23 | ⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝐴 ∈ 𝑆 ∧ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |
| 11 | 8 10 | syl3an1 | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ∈ 𝑆 ∧ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |
| 12 | 3 11 | mpd3an3 | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ∈ 𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |