This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 4-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1domg | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | f1dmex | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) | |
| 3 | fex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ V ) → 𝐹 ∈ V ) | |
| 4 | 1 2 3 | syl2an2r | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐹 ∈ V ) |
| 5 | 4 | expcom | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 ∈ V ) ) |
| 6 | f1eq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) | |
| 7 | 6 | spcegv | ⊢ ( 𝐹 ∈ V → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 8 | 5 7 | syli | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) |
| 9 | brdomg | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | |
| 10 | 8 9 | sylibrd | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐴 ≼ 𝐵 ) ) |