This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014) (Revised by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| ovolicc.2 | |- ( ph -> B e. RR ) |
||
| ovolicc.3 | |- ( ph -> A <_ B ) |
||
| ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
||
| ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
||
| ovolicc2.8 | |- ( ph -> G : U --> NN ) |
||
| ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
||
| ovolicc2.10 | |- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
||
| ovolicc2.11 | |- ( ph -> H : T --> T ) |
||
| ovolicc2.12 | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
||
| ovolicc2.13 | |- ( ph -> A e. C ) |
||
| ovolicc2.14 | |- ( ph -> C e. T ) |
||
| ovolicc2.15 | |- K = seq 1 ( ( H o. 1st ) , ( NN X. { C } ) ) |
||
| ovolicc2.16 | |- W = { n e. NN | B e. ( K ` n ) } |
||
| ovolicc2.17 | |- M = inf ( W , RR , < ) |
||
| Assertion | ovolicc2lem4 | |- ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | ovolicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | ovolicc.3 | |- ( ph -> A <_ B ) |
|
| 4 | ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 5 | ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 6 | ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
|
| 7 | ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
|
| 8 | ovolicc2.8 | |- ( ph -> G : U --> NN ) |
|
| 9 | ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
|
| 10 | ovolicc2.10 | |- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
|
| 11 | ovolicc2.11 | |- ( ph -> H : T --> T ) |
|
| 12 | ovolicc2.12 | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
|
| 13 | ovolicc2.13 | |- ( ph -> A e. C ) |
|
| 14 | ovolicc2.14 | |- ( ph -> C e. T ) |
|
| 15 | ovolicc2.15 | |- K = seq 1 ( ( H o. 1st ) , ( NN X. { C } ) ) |
|
| 16 | ovolicc2.16 | |- W = { n e. NN | B e. ( K ` n ) } |
|
| 17 | ovolicc2.17 | |- M = inf ( W , RR , < ) |
|
| 18 | arch | |- ( x e. RR -> E. z e. NN x < z ) |
|
| 19 | 18 | ad2antlr | |- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> E. z e. NN x < z ) |
| 20 | df-ima | |- ( ( G o. K ) " ( 1 ... M ) ) = ran ( ( G o. K ) |` ( 1 ... M ) ) |
|
| 21 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 22 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 23 | 21 15 22 14 11 | algrf | |- ( ph -> K : NN --> T ) |
| 24 | 10 | ssrab3 | |- T C_ U |
| 25 | fss | |- ( ( K : NN --> T /\ T C_ U ) -> K : NN --> U ) |
|
| 26 | 23 24 25 | sylancl | |- ( ph -> K : NN --> U ) |
| 27 | fco | |- ( ( G : U --> NN /\ K : NN --> U ) -> ( G o. K ) : NN --> NN ) |
|
| 28 | 8 26 27 | syl2anc | |- ( ph -> ( G o. K ) : NN --> NN ) |
| 29 | fz1ssnn | |- ( 1 ... M ) C_ NN |
|
| 30 | fssres | |- ( ( ( G o. K ) : NN --> NN /\ ( 1 ... M ) C_ NN ) -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN ) |
|
| 31 | 28 29 30 | sylancl | |- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN ) |
| 32 | 31 | frnd | |- ( ph -> ran ( ( G o. K ) |` ( 1 ... M ) ) C_ NN ) |
| 33 | 20 32 | eqsstrid | |- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) C_ NN ) |
| 34 | nnssre | |- NN C_ RR |
|
| 35 | 33 34 | sstrdi | |- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) C_ RR ) |
| 36 | 35 | ad3antrrr | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ RR ) |
| 37 | simpr | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. ( ( G o. K ) " ( 1 ... M ) ) ) |
|
| 38 | 36 37 | sseldd | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. RR ) |
| 39 | simpllr | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> x e. RR ) |
|
| 40 | nnre | |- ( z e. NN -> z e. RR ) |
|
| 41 | 40 | ad2antlr | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. RR ) |
| 42 | lelttr | |- ( ( y e. RR /\ x e. RR /\ z e. RR ) -> ( ( y <_ x /\ x < z ) -> y < z ) ) |
|
| 43 | 38 39 41 42 | syl3anc | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( y <_ x /\ x < z ) -> y < z ) ) |
| 44 | 43 | ancomsd | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( x < z /\ y <_ x ) -> y < z ) ) |
| 45 | 44 | expdimp | |- ( ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) /\ x < z ) -> ( y <_ x -> y < z ) ) |
| 46 | 45 | an32s | |- ( ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ x < z ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y <_ x -> y < z ) ) |
| 47 | 46 | ralimdva | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ x < z ) -> ( A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 48 | 47 | impancom | |- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> ( x < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 49 | 48 | an32s | |- ( ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) /\ z e. NN ) -> ( x < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 50 | 49 | reximdva | |- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> ( E. z e. NN x < z -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
| 51 | 19 50 | mpd | |- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) |
| 52 | fzfid | |- ( ph -> ( 1 ... M ) e. Fin ) |
|
| 53 | fvres | |- ( i e. ( 1 ... M ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( G o. K ) ` i ) ) |
|
| 54 | 53 | adantl | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( G o. K ) ` i ) ) |
| 55 | elfznn | |- ( i e. ( 1 ... M ) -> i e. NN ) |
|
| 56 | fvco3 | |- ( ( K : NN --> T /\ i e. NN ) -> ( ( G o. K ) ` i ) = ( G ` ( K ` i ) ) ) |
|
| 57 | 23 55 56 | syl2an | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( G o. K ) ` i ) = ( G ` ( K ` i ) ) ) |
| 58 | 54 57 | eqtrd | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( G ` ( K ` i ) ) ) |
| 59 | 58 | adantrr | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( G ` ( K ` i ) ) ) |
| 60 | fvres | |- ( j e. ( 1 ... M ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( ( G o. K ) ` j ) ) |
|
| 61 | 60 | ad2antll | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( ( G o. K ) ` j ) ) |
| 62 | elfznn | |- ( j e. ( 1 ... M ) -> j e. NN ) |
|
| 63 | 62 | adantl | |- ( ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) -> j e. NN ) |
| 64 | fvco3 | |- ( ( K : NN --> T /\ j e. NN ) -> ( ( G o. K ) ` j ) = ( G ` ( K ` j ) ) ) |
|
| 65 | 23 63 64 | syl2an | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( G o. K ) ` j ) = ( G ` ( K ` j ) ) ) |
| 66 | 61 65 | eqtrd | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( G ` ( K ` j ) ) ) |
| 67 | 59 66 | eqeq12d | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) <-> ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) ) ) |
| 68 | 2fveq3 | |- ( ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) |
|
| 69 | 29 | a1i | |- ( ph -> ( 1 ... M ) C_ NN ) |
| 70 | elfznn | |- ( n e. ( 1 ... M ) -> n e. NN ) |
|
| 71 | 70 | ad2antlr | |- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n e. NN ) |
| 72 | 71 | nnred | |- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n e. RR ) |
| 73 | 16 | ssrab3 | |- W C_ NN |
| 74 | 73 34 | sstri | |- W C_ RR |
| 75 | 73 21 | sseqtri | |- W C_ ( ZZ>= ` 1 ) |
| 76 | nnnfi | |- -. NN e. Fin |
|
| 77 | 6 | elin2d | |- ( ph -> U e. Fin ) |
| 78 | ssfi | |- ( ( U e. Fin /\ T C_ U ) -> T e. Fin ) |
|
| 79 | 77 24 78 | sylancl | |- ( ph -> T e. Fin ) |
| 80 | 79 | adantr | |- ( ( ph /\ W = (/) ) -> T e. Fin ) |
| 81 | 23 | adantr | |- ( ( ph /\ W = (/) ) -> K : NN --> T ) |
| 82 | 2fveq3 | |- ( ( K ` i ) = ( K ` j ) -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` j ) ) ) ) |
|
| 83 | 82 | fveq2d | |- ( ( K ` i ) = ( K ` j ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) |
| 84 | simpll | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ph ) |
|
| 85 | simprl | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> i e. NN ) |
|
| 86 | ral0 | |- A. m e. (/) n <_ m |
|
| 87 | simplr | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> W = (/) ) |
|
| 88 | 87 | raleqdv | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( A. m e. W n <_ m <-> A. m e. (/) n <_ m ) ) |
| 89 | 86 88 | mpbiri | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> A. m e. W n <_ m ) |
| 90 | 89 | ralrimivw | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> A. n e. NN A. m e. W n <_ m ) |
| 91 | rabid2 | |- ( NN = { n e. NN | A. m e. W n <_ m } <-> A. n e. NN A. m e. W n <_ m ) |
|
| 92 | 90 91 | sylibr | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> NN = { n e. NN | A. m e. W n <_ m } ) |
| 93 | 85 92 | eleqtrd | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> i e. { n e. NN | A. m e. W n <_ m } ) |
| 94 | simprr | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> j e. NN ) |
|
| 95 | 94 92 | eleqtrd | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> j e. { n e. NN | A. m e. W n <_ m } ) |
| 96 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ovolicc2lem3 | |- ( ( ph /\ ( i e. { n e. NN | A. m e. W n <_ m } /\ j e. { n e. NN | A. m e. W n <_ m } ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
| 97 | 84 93 95 96 | syl12anc | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
| 98 | 83 97 | imbitrrid | |- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( K ` i ) = ( K ` j ) -> i = j ) ) |
| 99 | 98 | ralrimivva | |- ( ( ph /\ W = (/) ) -> A. i e. NN A. j e. NN ( ( K ` i ) = ( K ` j ) -> i = j ) ) |
| 100 | dff13 | |- ( K : NN -1-1-> T <-> ( K : NN --> T /\ A. i e. NN A. j e. NN ( ( K ` i ) = ( K ` j ) -> i = j ) ) ) |
|
| 101 | 81 99 100 | sylanbrc | |- ( ( ph /\ W = (/) ) -> K : NN -1-1-> T ) |
| 102 | f1domg | |- ( T e. Fin -> ( K : NN -1-1-> T -> NN ~<_ T ) ) |
|
| 103 | 80 101 102 | sylc | |- ( ( ph /\ W = (/) ) -> NN ~<_ T ) |
| 104 | domfi | |- ( ( T e. Fin /\ NN ~<_ T ) -> NN e. Fin ) |
|
| 105 | 79 103 104 | syl2an2r | |- ( ( ph /\ W = (/) ) -> NN e. Fin ) |
| 106 | 105 | ex | |- ( ph -> ( W = (/) -> NN e. Fin ) ) |
| 107 | 106 | necon3bd | |- ( ph -> ( -. NN e. Fin -> W =/= (/) ) ) |
| 108 | 76 107 | mpi | |- ( ph -> W =/= (/) ) |
| 109 | infssuzcl | |- ( ( W C_ ( ZZ>= ` 1 ) /\ W =/= (/) ) -> inf ( W , RR , < ) e. W ) |
|
| 110 | 75 108 109 | sylancr | |- ( ph -> inf ( W , RR , < ) e. W ) |
| 111 | 17 110 | eqeltrid | |- ( ph -> M e. W ) |
| 112 | 74 111 | sselid | |- ( ph -> M e. RR ) |
| 113 | 112 | ad2antrr | |- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> M e. RR ) |
| 114 | 74 | sseli | |- ( m e. W -> m e. RR ) |
| 115 | 114 | adantl | |- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> m e. RR ) |
| 116 | elfzle2 | |- ( n e. ( 1 ... M ) -> n <_ M ) |
|
| 117 | 116 | ad2antlr | |- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n <_ M ) |
| 118 | infssuzle | |- ( ( W C_ ( ZZ>= ` 1 ) /\ m e. W ) -> inf ( W , RR , < ) <_ m ) |
|
| 119 | 75 118 | mpan | |- ( m e. W -> inf ( W , RR , < ) <_ m ) |
| 120 | 17 119 | eqbrtrid | |- ( m e. W -> M <_ m ) |
| 121 | 120 | adantl | |- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> M <_ m ) |
| 122 | 72 113 115 117 121 | letrd | |- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n <_ m ) |
| 123 | 122 | ralrimiva | |- ( ( ph /\ n e. ( 1 ... M ) ) -> A. m e. W n <_ m ) |
| 124 | 69 123 | ssrabdv | |- ( ph -> ( 1 ... M ) C_ { n e. NN | A. m e. W n <_ m } ) |
| 125 | 124 | adantr | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( 1 ... M ) C_ { n e. NN | A. m e. W n <_ m } ) |
| 126 | simprl | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> i e. ( 1 ... M ) ) |
|
| 127 | 125 126 | sseldd | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> i e. { n e. NN | A. m e. W n <_ m } ) |
| 128 | simprr | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> j e. ( 1 ... M ) ) |
|
| 129 | 125 128 | sseldd | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> j e. { n e. NN | A. m e. W n <_ m } ) |
| 130 | 127 129 | jca | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( i e. { n e. NN | A. m e. W n <_ m } /\ j e. { n e. NN | A. m e. W n <_ m } ) ) |
| 131 | 130 96 | syldan | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
| 132 | 68 131 | imbitrrid | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) -> i = j ) ) |
| 133 | 67 132 | sylbid | |- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) |
| 134 | 133 | ralrimivva | |- ( ph -> A. i e. ( 1 ... M ) A. j e. ( 1 ... M ) ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) |
| 135 | dff13 | |- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN <-> ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN /\ A. i e. ( 1 ... M ) A. j e. ( 1 ... M ) ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) ) |
|
| 136 | 31 134 135 | sylanbrc | |- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN ) |
| 137 | f1f1orn | |- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
|
| 138 | 136 137 | syl | |- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
| 139 | f1oeq3 | |- ( ( ( G o. K ) " ( 1 ... M ) ) = ran ( ( G o. K ) |` ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) <-> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) ) |
|
| 140 | 20 139 | ax-mp | |- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) <-> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
| 141 | 138 140 | sylibr | |- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
| 142 | f1ofo | |- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
|
| 143 | 141 142 | syl | |- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
| 144 | fofi | |- ( ( ( 1 ... M ) e. Fin /\ ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) |
|
| 145 | 52 143 144 | syl2anc | |- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) |
| 146 | fimaxre2 | |- ( ( ( ( G o. K ) " ( 1 ... M ) ) C_ RR /\ ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) -> E. x e. RR A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) |
|
| 147 | 35 145 146 | syl2anc | |- ( ph -> E. x e. RR A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) |
| 148 | 51 147 | r19.29a | |- ( ph -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) |
| 149 | 2 1 | resubcld | |- ( ph -> ( B - A ) e. RR ) |
| 150 | 149 | rexrd | |- ( ph -> ( B - A ) e. RR* ) |
| 151 | 150 | adantr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) e. RR* ) |
| 152 | fzfid | |- ( ph -> ( 1 ... z ) e. Fin ) |
|
| 153 | elfznn | |- ( j e. ( 1 ... z ) -> j e. NN ) |
|
| 154 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 155 | 154 | ovolfsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 156 | 5 155 | syl | |- ( ph -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 157 | 156 | ffvelcdmda | |- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) ) |
| 158 | 153 157 | sylan2 | |- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) ) |
| 159 | elrege0 | |- ( ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) <-> ( ( ( ( abs o. - ) o. F ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) ) |
|
| 160 | 158 159 | sylib | |- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( ( abs o. - ) o. F ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) ) |
| 161 | 160 | simpld | |- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 162 | 152 161 | fsumrecl | |- ( ph -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 163 | 162 | adantr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 164 | 163 | rexrd | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR* ) |
| 165 | 154 4 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 166 | 5 165 | syl | |- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 167 | 166 | frnd | |- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 168 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 169 | 167 168 | sstrdi | |- ( ph -> ran S C_ RR ) |
| 170 | ressxr | |- RR C_ RR* |
|
| 171 | 169 170 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 172 | supxrcl | |- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
|
| 173 | 171 172 | syl | |- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 174 | 173 | adantr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sup ( ran S , RR* , < ) e. RR* ) |
| 175 | 149 | adantr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) e. RR ) |
| 176 | 33 | sselda | |- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> j e. NN ) |
| 177 | 168 157 | sselid | |- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 178 | 176 177 | syldan | |- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 179 | 145 178 | fsumrecl | |- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 180 | 179 | adantr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 181 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 182 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> F : NN --> ( RR X. RR ) ) |
|
| 183 | 5 181 182 | sylancl | |- ( ph -> F : NN --> ( RR X. RR ) ) |
| 184 | 73 111 | sselid | |- ( ph -> M e. NN ) |
| 185 | 26 184 | ffvelcdmd | |- ( ph -> ( K ` M ) e. U ) |
| 186 | 8 185 | ffvelcdmd | |- ( ph -> ( G ` ( K ` M ) ) e. NN ) |
| 187 | 183 186 | ffvelcdmd | |- ( ph -> ( F ` ( G ` ( K ` M ) ) ) e. ( RR X. RR ) ) |
| 188 | xp2nd | |- ( ( F ` ( G ` ( K ` M ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. RR ) |
|
| 189 | 187 188 | syl | |- ( ph -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. RR ) |
| 190 | 24 14 | sselid | |- ( ph -> C e. U ) |
| 191 | 8 190 | ffvelcdmd | |- ( ph -> ( G ` C ) e. NN ) |
| 192 | 183 191 | ffvelcdmd | |- ( ph -> ( F ` ( G ` C ) ) e. ( RR X. RR ) ) |
| 193 | xp1st | |- ( ( F ` ( G ` C ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` C ) ) ) e. RR ) |
|
| 194 | 192 193 | syl | |- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) e. RR ) |
| 195 | 189 194 | resubcld | |- ( ph -> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) e. RR ) |
| 196 | fveq2 | |- ( j = ( G ` ( K ` i ) ) -> ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) ) |
|
| 197 | 177 | recnd | |- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
| 198 | 176 197 | syldan | |- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
| 199 | 196 52 141 58 198 | fsumf1o | |- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) = sum_ i e. ( 1 ... M ) ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) ) |
| 200 | 8 | adantr | |- ( ( ph /\ i e. ( 1 ... M ) ) -> G : U --> NN ) |
| 201 | ffvelcdm | |- ( ( K : NN --> U /\ i e. NN ) -> ( K ` i ) e. U ) |
|
| 202 | 26 55 201 | syl2an | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( K ` i ) e. U ) |
| 203 | 200 202 | ffvelcdmd | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` ( K ` i ) ) e. NN ) |
| 204 | 154 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( G ` ( K ` i ) ) e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 205 | 5 203 204 | syl2an2r | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 206 | 205 | sumeq2dv | |- ( ph -> sum_ i e. ( 1 ... M ) ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 207 | 183 | adantr | |- ( ( ph /\ i e. NN ) -> F : NN --> ( RR X. RR ) ) |
| 208 | 8 | adantr | |- ( ( ph /\ i e. NN ) -> G : U --> NN ) |
| 209 | 26 | ffvelcdmda | |- ( ( ph /\ i e. NN ) -> ( K ` i ) e. U ) |
| 210 | 208 209 | ffvelcdmd | |- ( ( ph /\ i e. NN ) -> ( G ` ( K ` i ) ) e. NN ) |
| 211 | 207 210 | ffvelcdmd | |- ( ( ph /\ i e. NN ) -> ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) ) |
| 212 | xp2nd | |- ( ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
|
| 213 | 211 212 | syl | |- ( ( ph /\ i e. NN ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 214 | 55 213 | sylan2 | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 215 | 214 | recnd | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 216 | 183 | adantr | |- ( ( ph /\ i e. ( 1 ... M ) ) -> F : NN --> ( RR X. RR ) ) |
| 217 | 216 203 | ffvelcdmd | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) ) |
| 218 | xp1st | |- ( ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
|
| 219 | 217 218 | syl | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 220 | 219 | recnd | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 221 | 52 215 220 | fsumsub | |- ( ph -> sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 222 | fzfid | |- ( ph -> ( 1 ... ( M - 1 ) ) e. Fin ) |
|
| 223 | elfznn | |- ( i e. ( 1 ... ( M - 1 ) ) -> i e. NN ) |
|
| 224 | 223 213 | sylan2 | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 225 | 222 224 | fsumrecl | |- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
| 226 | 225 | recnd | |- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 227 | 189 | recnd | |- ( ph -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. CC ) |
| 228 | 75 111 | sselid | |- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 229 | 2fveq3 | |- ( i = M -> ( G ` ( K ` i ) ) = ( G ` ( K ` M ) ) ) |
|
| 230 | 229 | fveq2d | |- ( i = M -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` M ) ) ) ) |
| 231 | 230 | fveq2d | |- ( i = M -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) |
| 232 | 228 215 231 | fsumm1 | |- ( ph -> sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) + ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) |
| 233 | 226 227 232 | comraddd | |- ( ph -> sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 234 | 2fveq3 | |- ( i = 1 -> ( G ` ( K ` i ) ) = ( G ` ( K ` 1 ) ) ) |
|
| 235 | 234 | fveq2d | |- ( i = 1 -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` 1 ) ) ) ) |
| 236 | 235 | fveq2d | |- ( i = 1 -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) ) |
| 237 | 228 220 236 | fsum1p | |- ( ph -> sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) + sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 238 | 21 15 22 14 | algr0 | |- ( ph -> ( K ` 1 ) = C ) |
| 239 | 238 | fveq2d | |- ( ph -> ( G ` ( K ` 1 ) ) = ( G ` C ) ) |
| 240 | 239 | fveq2d | |- ( ph -> ( F ` ( G ` ( K ` 1 ) ) ) = ( F ` ( G ` C ) ) ) |
| 241 | 240 | fveq2d | |- ( ph -> ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) = ( 1st ` ( F ` ( G ` C ) ) ) ) |
| 242 | 22 | peano2zd | |- ( ph -> ( 1 + 1 ) e. ZZ ) |
| 243 | 184 | nnzd | |- ( ph -> M e. ZZ ) |
| 244 | 1z | |- 1 e. ZZ |
|
| 245 | fzp1ss | |- ( 1 e. ZZ -> ( ( 1 + 1 ) ... M ) C_ ( 1 ... M ) ) |
|
| 246 | 244 245 | mp1i | |- ( ph -> ( ( 1 + 1 ) ... M ) C_ ( 1 ... M ) ) |
| 247 | 246 | sselda | |- ( ( ph /\ i e. ( ( 1 + 1 ) ... M ) ) -> i e. ( 1 ... M ) ) |
| 248 | 247 220 | syldan | |- ( ( ph /\ i e. ( ( 1 + 1 ) ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
| 249 | 2fveq3 | |- ( i = ( j + 1 ) -> ( G ` ( K ` i ) ) = ( G ` ( K ` ( j + 1 ) ) ) ) |
|
| 250 | 249 | fveq2d | |- ( i = ( j + 1 ) -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) |
| 251 | 250 | fveq2d | |- ( i = ( j + 1 ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) ) |
| 252 | 22 242 243 248 251 | fsumshftm | |- ( ph -> sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) ) |
| 253 | ax-1cn | |- 1 e. CC |
|
| 254 | 253 253 | pncan3oi | |- ( ( 1 + 1 ) - 1 ) = 1 |
| 255 | 254 | oveq1i | |- ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) = ( 1 ... ( M - 1 ) ) |
| 256 | 255 | sumeq1i | |- sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ j e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) |
| 257 | fvoveq1 | |- ( j = i -> ( K ` ( j + 1 ) ) = ( K ` ( i + 1 ) ) ) |
|
| 258 | 257 | fveq2d | |- ( j = i -> ( G ` ( K ` ( j + 1 ) ) ) = ( G ` ( K ` ( i + 1 ) ) ) ) |
| 259 | 258 | fveq2d | |- ( j = i -> ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) = ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
| 260 | 259 | fveq2d | |- ( j = i -> ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) |
| 261 | 260 | cbvsumv | |- sum_ j e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
| 262 | 256 261 | eqtri | |- sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
| 263 | 252 262 | eqtrdi | |- ( ph -> sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) |
| 264 | 241 263 | oveq12d | |- ( ph -> ( ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) + sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 265 | 237 264 | eqtrd | |- ( ph -> sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 266 | 233 265 | oveq12d | |- ( ph -> ( sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) - ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 267 | 194 | recnd | |- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) e. CC ) |
| 268 | peano2nn | |- ( i e. NN -> ( i + 1 ) e. NN ) |
|
| 269 | ffvelcdm | |- ( ( K : NN --> U /\ ( i + 1 ) e. NN ) -> ( K ` ( i + 1 ) ) e. U ) |
|
| 270 | 26 268 269 | syl2an | |- ( ( ph /\ i e. NN ) -> ( K ` ( i + 1 ) ) e. U ) |
| 271 | 208 270 | ffvelcdmd | |- ( ( ph /\ i e. NN ) -> ( G ` ( K ` ( i + 1 ) ) ) e. NN ) |
| 272 | 207 271 | ffvelcdmd | |- ( ( ph /\ i e. NN ) -> ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) e. ( RR X. RR ) ) |
| 273 | xp1st | |- ( ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
|
| 274 | 272 273 | syl | |- ( ( ph /\ i e. NN ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
| 275 | 223 274 | sylan2 | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
| 276 | 222 275 | fsumrecl | |- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
| 277 | 276 | recnd | |- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. CC ) |
| 278 | 227 226 267 277 | addsub4d | |- ( ph -> ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) - ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 279 | 221 266 278 | 3eqtrd | |- ( ph -> sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 280 | 199 206 279 | 3eqtrd | |- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 281 | 280 179 | eqeltrrd | |- ( ph -> ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) e. RR ) |
| 282 | fveq2 | |- ( n = M -> ( K ` n ) = ( K ` M ) ) |
|
| 283 | 282 | eleq2d | |- ( n = M -> ( B e. ( K ` n ) <-> B e. ( K ` M ) ) ) |
| 284 | 283 16 | elrab2 | |- ( M e. W <-> ( M e. NN /\ B e. ( K ` M ) ) ) |
| 285 | 111 284 | sylib | |- ( ph -> ( M e. NN /\ B e. ( K ` M ) ) ) |
| 286 | 285 | simprd | |- ( ph -> B e. ( K ` M ) ) |
| 287 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | |- ( ( ph /\ ( K ` M ) e. U ) -> ( B e. ( K ` M ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) ) |
| 288 | 185 287 | mpdan | |- ( ph -> ( B e. ( K ` M ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) ) |
| 289 | 286 288 | mpbid | |- ( ph -> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) |
| 290 | 289 | simp3d | |- ( ph -> B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) |
| 291 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | |- ( ( ph /\ C e. U ) -> ( A e. C <-> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) ) |
| 292 | 190 291 | mpdan | |- ( ph -> ( A e. C <-> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) ) |
| 293 | 13 292 | mpbid | |- ( ph -> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) |
| 294 | 293 | simp2d | |- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) < A ) |
| 295 | 2 194 189 1 290 294 | lt2subd | |- ( ph -> ( B - A ) < ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) ) |
| 296 | 149 195 295 | ltled | |- ( ph -> ( B - A ) <_ ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) ) |
| 297 | 223 | adantl | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. NN ) |
| 298 | simpr | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 1 ... ( M - 1 ) ) ) |
|
| 299 | 243 | adantr | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. ZZ ) |
| 300 | elfzm11 | |- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( i e. ( 1 ... ( M - 1 ) ) <-> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) ) |
|
| 301 | 244 299 300 | sylancr | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ( 1 ... ( M - 1 ) ) <-> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) ) |
| 302 | 298 301 | mpbid | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) |
| 303 | 302 | simp3d | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i < M ) |
| 304 | 297 | nnred | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. RR ) |
| 305 | 112 | adantr | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. RR ) |
| 306 | 304 305 | ltnled | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i < M <-> -. M <_ i ) ) |
| 307 | 303 306 | mpbid | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> -. M <_ i ) |
| 308 | infssuzle | |- ( ( W C_ ( ZZ>= ` 1 ) /\ i e. W ) -> inf ( W , RR , < ) <_ i ) |
|
| 309 | 75 308 | mpan | |- ( i e. W -> inf ( W , RR , < ) <_ i ) |
| 310 | 17 309 | eqbrtrid | |- ( i e. W -> M <_ i ) |
| 311 | 307 310 | nsyl | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> -. i e. W ) |
| 312 | 297 311 | jca | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. NN /\ -. i e. W ) ) |
| 313 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ovolicc2lem2 | |- ( ( ph /\ ( i e. NN /\ -. i e. W ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) |
| 314 | 312 313 | syldan | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) |
| 315 | 314 | iftrued | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) = ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 316 | 2fveq3 | |- ( t = ( K ` i ) -> ( F ` ( G ` t ) ) = ( F ` ( G ` ( K ` i ) ) ) ) |
|
| 317 | 316 | fveq2d | |- ( t = ( K ` i ) -> ( 2nd ` ( F ` ( G ` t ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 318 | 317 | breq1d | |- ( t = ( K ` i ) -> ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) ) |
| 319 | 318 317 | ifbieq1d | |- ( t = ( K ` i ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) = if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) ) |
| 320 | fveq2 | |- ( t = ( K ` i ) -> ( H ` t ) = ( H ` ( K ` i ) ) ) |
|
| 321 | 319 320 | eleq12d | |- ( t = ( K ` i ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) <-> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) e. ( H ` ( K ` i ) ) ) ) |
| 322 | 12 | ralrimiva | |- ( ph -> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
| 323 | 322 | adantr | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
| 324 | ffvelcdm | |- ( ( K : NN --> T /\ i e. NN ) -> ( K ` i ) e. T ) |
|
| 325 | 23 223 324 | syl2an | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` i ) e. T ) |
| 326 | 321 323 325 | rspcdva | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) e. ( H ` ( K ` i ) ) ) |
| 327 | 315 326 | eqeltrrd | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( H ` ( K ` i ) ) ) |
| 328 | 21 15 22 14 11 | algrp1 | |- ( ( ph /\ i e. NN ) -> ( K ` ( i + 1 ) ) = ( H ` ( K ` i ) ) ) |
| 329 | 223 328 | sylan2 | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` ( i + 1 ) ) = ( H ` ( K ` i ) ) ) |
| 330 | 327 329 | eleqtrrd | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) ) |
| 331 | 223 270 | sylan2 | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` ( i + 1 ) ) e. U ) |
| 332 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | |- ( ( ph /\ ( K ` ( i + 1 ) ) e. U ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 333 | 331 332 | syldan | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 334 | 330 333 | mpbid | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 335 | 334 | simp2d | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 336 | 275 224 335 | ltled | |- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 337 | 222 275 224 336 | fsumle | |- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
| 338 | 225 276 | subge0d | |- ( ph -> ( 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) <-> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
| 339 | 337 338 | mpbird | |- ( ph -> 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
| 340 | 225 276 | resubcld | |- ( ph -> ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) e. RR ) |
| 341 | 195 340 | addge01d | |- ( ph -> ( 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) ) |
| 342 | 339 341 | mpbid | |- ( ph -> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 343 | 149 195 281 296 342 | letrd | |- ( ph -> ( B - A ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
| 344 | 343 280 | breqtrrd | |- ( ph -> ( B - A ) <_ sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 345 | 344 | adantr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 346 | fzfid | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( 1 ... z ) e. Fin ) |
|
| 347 | 161 | adantlr | |- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
| 348 | 160 | simprd | |- ( ( ph /\ j e. ( 1 ... z ) ) -> 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) |
| 349 | 348 | adantlr | |- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) |
| 350 | 33 | adantr | |- ( ( ph /\ z e. NN ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ NN ) |
| 351 | 350 | sselda | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. NN ) |
| 352 | 351 | nnred | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. RR ) |
| 353 | 40 | ad2antlr | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. RR ) |
| 354 | ltle | |- ( ( y e. RR /\ z e. RR ) -> ( y < z -> y <_ z ) ) |
|
| 355 | 352 353 354 | syl2anc | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y < z -> y <_ z ) ) |
| 356 | 351 21 | eleqtrdi | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. ( ZZ>= ` 1 ) ) |
| 357 | nnz | |- ( z e. NN -> z e. ZZ ) |
|
| 358 | 357 | ad2antlr | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. ZZ ) |
| 359 | elfz5 | |- ( ( y e. ( ZZ>= ` 1 ) /\ z e. ZZ ) -> ( y e. ( 1 ... z ) <-> y <_ z ) ) |
|
| 360 | 356 358 359 | syl2anc | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y e. ( 1 ... z ) <-> y <_ z ) ) |
| 361 | 355 360 | sylibrd | |- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y < z -> y e. ( 1 ... z ) ) ) |
| 362 | 361 | ralimdva | |- ( ( ph /\ z e. NN ) -> ( A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) ) |
| 363 | 362 | impr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) |
| 364 | dfss3 | |- ( ( ( G o. K ) " ( 1 ... M ) ) C_ ( 1 ... z ) <-> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) |
|
| 365 | 363 364 | sylibr | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ ( 1 ... z ) ) |
| 366 | 346 347 349 365 | fsumless | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) <_ sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 367 | 175 180 163 345 366 | letrd | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) ) |
| 368 | eqidd | |- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( abs o. - ) o. F ) ` j ) ) |
|
| 369 | simprl | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> z e. NN ) |
|
| 370 | 369 21 | eleqtrdi | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> z e. ( ZZ>= ` 1 ) ) |
| 371 | 347 | recnd | |- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
| 372 | 368 370 371 | fsumser | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` z ) ) |
| 373 | 4 | fveq1i | |- ( S ` z ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` z ) |
| 374 | 372 373 | eqtr4di | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) = ( S ` z ) ) |
| 375 | 166 | ffnd | |- ( ph -> S Fn NN ) |
| 376 | fnfvelrn | |- ( ( S Fn NN /\ z e. NN ) -> ( S ` z ) e. ran S ) |
|
| 377 | 375 369 376 | syl2an2r | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( S ` z ) e. ran S ) |
| 378 | supxrub | |- ( ( ran S C_ RR* /\ ( S ` z ) e. ran S ) -> ( S ` z ) <_ sup ( ran S , RR* , < ) ) |
|
| 379 | 171 377 378 | syl2an2r | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( S ` z ) <_ sup ( ran S , RR* , < ) ) |
| 380 | 374 379 | eqbrtrd | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) <_ sup ( ran S , RR* , < ) ) |
| 381 | 151 164 174 367 380 | xrletrd | |- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
| 382 | 148 381 | rexlimddv | |- ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |