This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the algorithm iterator R at ( K + 1 ) . (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algrf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| algrf.2 | ⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) | ||
| algrf.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| algrf.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| algrf.5 | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ 𝑆 ) | ||
| Assertion | algrp1 | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( 𝑅 ‘ ( 𝐾 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | algrf.2 | ⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) | |
| 3 | algrf.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | algrf.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 5 | algrf.5 | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ 𝑆 ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝐾 ∈ 𝑍 ) | |
| 7 | 6 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | seqp1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝐾 + 1 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝐾 + 1 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) ) |
| 10 | 2 | fveq1i | ⊢ ( 𝑅 ‘ ( 𝐾 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝐾 + 1 ) ) |
| 11 | 2 | fveq1i | ⊢ ( 𝑅 ‘ 𝐾 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) |
| 12 | 11 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ) |
| 13 | fvex | ⊢ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ∈ V | |
| 14 | fvex | ⊢ ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ∈ V | |
| 15 | 13 14 | opco1i | ⊢ ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ) |
| 16 | 12 15 | eqtr4i | ⊢ ( 𝐹 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝐾 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝐾 + 1 ) ) ) |
| 17 | 9 10 16 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( 𝑅 ‘ ( 𝐾 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝐾 ) ) ) |