This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the partial sums of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolfs.1 | ⊢ 𝐺 = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| ovolfs.2 | ⊢ 𝑆 = seq 1 ( + , 𝐺 ) | ||
| Assertion | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolfs.1 | ⊢ 𝐺 = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 2 | ovolfs.2 | ⊢ 𝑆 = seq 1 ( + , 𝐺 ) | |
| 3 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 4 | 1zzd | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 1 ∈ ℤ ) | |
| 5 | 1 | ovolfsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐺 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 7 | ge0addcl | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 9 | 3 4 6 8 | seqf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 10 | 2 | feq1i | ⊢ ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 11 | 9 10 | sylibr | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |