This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexlimddv.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
| rexlimddv.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) | ||
| Assertion | rexlimddv | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimddv.1 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) | |
| 2 | rexlimddv.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → 𝜒 ) | |
| 3 | 2 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |
| 4 | 1 3 | mpd | ⊢ ( 𝜑 → 𝜒 ) |