This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumneg.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumneg.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fsumsub.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fsumsub | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 − 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 − Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumneg.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumneg.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | fsumsub.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 4 | 3 | negcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → - 𝐶 ∈ ℂ ) |
| 5 | 1 2 4 | fsumadd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + - 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 - 𝐶 ) ) |
| 6 | 1 3 | fsumneg | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 - 𝐶 = - Σ 𝑘 ∈ 𝐴 𝐶 ) |
| 7 | 6 | oveq2d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 - 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + - Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 8 | 5 7 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + - 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + - Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 9 | 2 3 | negsubd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 10 | 9 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + - 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 − 𝐶 ) ) |
| 11 | 1 2 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 12 | 1 3 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 13 | 11 12 | negsubd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 + - Σ 𝑘 ∈ 𝐴 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 − Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 14 | 8 10 13 | 3eqtr3d | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 − 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 − Σ 𝑘 ∈ 𝐴 𝐶 ) ) |