This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | ||
| Assertion | fpwwe2lem12 | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | |
| 5 | ssun2 | ⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) |
| 7 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 8 | 1 6 7 4 | fpwwe2lem11 | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑋 ∈ dom 𝑊 ) |
| 9 | 1 6 7 4 | fpwwe2lem10 | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 10 | ffun | ⊢ ( 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) → Fun 𝑊 ) | |
| 11 | funfvbrb | ⊢ ( Fun 𝑊 → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) |
| 13 | 8 12 | mpbid | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
| 14 | 1 6 | fpwwe2lem2 | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 15 | 13 14 | mpbid | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 16 | 15 | simpld | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 17 | 16 | simpld | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑋 ⊆ 𝐴 ) |
| 18 | 16 | simprd | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 19 | 15 | simprd | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 20 | 19 | simpld | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) We 𝑋 ) |
| 21 | 17 18 20 | 3jca | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑊 ‘ 𝑋 ) We 𝑋 ) ) |
| 22 | 1 2 3 | fpwwe2lem4 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑊 ‘ 𝑋 ) We 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝐴 ) |
| 23 | 21 22 | syldan | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝐴 ) |
| 24 | 23 | snssd | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ 𝐴 ) |
| 25 | 17 24 | unssd | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ) |
| 26 | ssun1 | ⊢ 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 27 | xpss12 | ⊢ ( ( 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑋 × 𝑋 ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) | |
| 28 | 26 26 27 | mp2an | ⊢ ( 𝑋 × 𝑋 ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
| 29 | 18 28 | sstrdi | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
| 30 | xpss12 | ⊢ ( ( 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) | |
| 31 | 26 5 30 | mp2an | ⊢ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
| 32 | 31 | a1i | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
| 33 | 29 32 | unssd | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
| 34 | 25 33 | jca | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) ) |
| 35 | ssdif0 | ⊢ ( 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ↔ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ) | |
| 36 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) | |
| 37 | 18 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 38 | 37 | ssbrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
| 39 | brxp | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) | |
| 40 | 39 | simplbi | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
| 41 | 38 40 | syl6 | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
| 42 | 36 41 | mtod | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
| 43 | brxp | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 44 | 43 | simplbi | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
| 45 | 36 44 | nsyl | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
| 46 | ovex | ⊢ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ V | |
| 47 | breq2 | ⊢ ( 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) | |
| 48 | brun | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) | |
| 49 | 47 48 | bitrdi | ⊢ ( 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) ) |
| 50 | 49 | notbid | ⊢ ( 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) ) |
| 51 | 46 50 | rexsn | ⊢ ( ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
| 52 | ioran | ⊢ ( ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) | |
| 53 | 51 52 | bitri | ⊢ ( ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
| 54 | 42 45 53 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 55 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 56 | sssn | ⊢ ( 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 = ∅ ∨ 𝑥 = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
| 58 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 ≠ ∅ ) | |
| 59 | 58 | neneqd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ 𝑥 = ∅ ) |
| 60 | 57 59 | orcnd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
| 61 | 60 | raleqdv | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 62 | breq1 | ⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) | |
| 63 | 62 | notbid | ⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 64 | 46 63 | ralsn | ⊢ ( ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 65 | 61 64 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 66 | 60 65 | rexeqbidv | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 67 | 54 66 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 68 | 67 | ex | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ( 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 69 | 35 68 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 70 | vex | ⊢ 𝑥 ∈ V | |
| 71 | difexg | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) | |
| 72 | 70 71 | mp1i | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) |
| 73 | wefr | ⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) | |
| 74 | 20 73 | syl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
| 75 | 74 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
| 76 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 77 | uncom | ⊢ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∪ 𝑋 ) | |
| 78 | 76 77 | sseqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → 𝑥 ⊆ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∪ 𝑋 ) ) |
| 79 | ssundif | ⊢ ( 𝑥 ⊆ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∪ 𝑋 ) ↔ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ) | |
| 80 | 78 79 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ) |
| 81 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) | |
| 82 | fri | ⊢ ( ( ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ∧ ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) ∧ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) | |
| 83 | 72 75 80 81 82 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) |
| 84 | brun | ⊢ ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) | |
| 85 | idd | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) | |
| 86 | brxp | ⊢ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 87 | 86 | simprbi | ⊢ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
| 88 | eldifn | ⊢ ( 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 89 | 88 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
| 90 | 89 | pm2.21d | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
| 91 | 87 90 | syl5 | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
| 92 | 85 91 | jaod | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
| 93 | 84 92 | biimtrid | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
| 94 | 93 | con3d | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 95 | 94 | ralimdv | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 96 | simpr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) | |
| 97 | 96 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
| 98 | 18 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 99 | 98 | ssbrd | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) 𝑦 ) ) |
| 100 | brxp | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) | |
| 101 | 100 | simplbi | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) 𝑦 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
| 102 | 99 101 | syl6 | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
| 103 | 97 102 | mtod | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ) |
| 104 | brxp | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 105 | 104 | simprbi | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
| 106 | 89 105 | nsyl | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) |
| 107 | brun | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) | |
| 108 | 62 107 | bitrdi | ⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) ) |
| 109 | 108 | notbid | ⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) ) |
| 110 | 46 109 | ralsn | ⊢ ( ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
| 111 | ioran | ⊢ ( ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) | |
| 112 | 110 111 | bitri | ⊢ ( ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
| 113 | 103 106 112 | sylanbrc | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 114 | 95 113 | jctird | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∧ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) ) |
| 115 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 116 | undif1 | ⊢ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( 𝑥 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 117 | 115 116 | sseqtrri | ⊢ 𝑥 ⊆ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
| 118 | ralun | ⊢ ( ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∧ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) → ∀ 𝑧 ∈ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) | |
| 119 | ssralv | ⊢ ( 𝑥 ⊆ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∀ 𝑧 ∈ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) | |
| 120 | 117 118 119 | mpsyl | ⊢ ( ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∧ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 121 | 114 120 | syl6 | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 122 | eldifi | ⊢ ( 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑦 ∈ 𝑥 ) | |
| 123 | 122 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → 𝑦 ∈ 𝑥 ) |
| 124 | 121 123 | jctild | ⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) ) |
| 125 | 124 | expimpd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( ( 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) ) |
| 126 | 125 | reximdv2 | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( ∃ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 127 | 83 126 | mpd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 128 | 127 | ex | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 129 | 69 128 | pm2.61dne | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 130 | 129 | ex | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 131 | 130 | alrimiv | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ∀ 𝑥 ( ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 132 | df-fr | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) Fr ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) | |
| 133 | 131 132 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) Fr ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
| 134 | elun | ⊢ ( 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 135 | elun | ⊢ ( 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 136 | 134 135 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
| 137 | weso | ⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) | |
| 138 | 20 137 | syl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) |
| 139 | solin | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) Or 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) ) | |
| 140 | 138 139 | sylan | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) ) |
| 141 | ssun1 | ⊢ ( 𝑊 ‘ 𝑋 ) ⊆ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 142 | 141 | a1i | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
| 143 | 142 | ssbrd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 → 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 144 | idd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) ) | |
| 145 | 142 | ssbrd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 → 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
| 146 | 143 144 145 | 3orim123d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
| 147 | 140 146 | mpd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
| 148 | 147 | ex | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
| 149 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) | |
| 150 | 149 | ancomd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
| 151 | brxp | ⊢ ( 𝑦 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 152 | 150 151 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥 ) |
| 153 | ssun2 | ⊢ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 154 | 153 | ssbri | ⊢ ( 𝑦 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥 → 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) |
| 155 | 3mix3 | ⊢ ( 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) | |
| 156 | 152 154 155 | 3syl | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
| 157 | 156 | ex | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
| 158 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 159 | brxp | ⊢ ( 𝑥 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 160 | 158 159 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → 𝑥 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) |
| 161 | 153 | ssbri | ⊢ ( 𝑥 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 162 | 3mix1 | ⊢ ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) | |
| 163 | 160 161 162 | 3syl | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
| 164 | 163 | ex | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
| 165 | elsni | ⊢ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → 𝑥 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) | |
| 166 | elsni | ⊢ ( 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) | |
| 167 | eqtr3 | ⊢ ( ( 𝑥 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∧ 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) → 𝑥 = 𝑦 ) | |
| 168 | 165 166 167 | syl2an | ⊢ ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 = 𝑦 ) |
| 169 | 168 | 3mix2d | ⊢ ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
| 170 | 169 | a1i | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
| 171 | 148 157 164 170 | ccased | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
| 172 | 136 171 | biimtrid | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
| 173 | 172 | ralrimivv | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ∀ 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
| 174 | dfwe2 | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) Fr ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) | |
| 175 | 133 173 174 | sylanbrc | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
| 176 | 1 | fpwwe2cbv | ⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑏 ] ( 𝑏 𝐹 ( 𝑠 ∩ ( 𝑏 × 𝑏 ) ) ) = 𝑧 ) ) } |
| 177 | 176 6 13 | fpwwe2lem3 | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = 𝑦 ) |
| 178 | cnvimass | ⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ⊆ dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 179 | fvex | ⊢ ( 𝑊 ‘ 𝑋 ) ∈ V | |
| 180 | snex | ⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∈ V | |
| 181 | xpexg | ⊢ ( ( 𝑋 ∈ dom 𝑊 ∧ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∈ V ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) | |
| 182 | 8 180 181 | sylancl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) |
| 183 | unexg | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∈ V ∧ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) | |
| 184 | 179 182 183 | sylancr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) |
| 185 | 184 | dmexd | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) |
| 186 | ssexg | ⊢ ( ( ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ⊆ dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∧ dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) | |
| 187 | 178 185 186 | sylancr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) |
| 188 | 187 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) |
| 189 | id | ⊢ ( 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) → 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) | |
| 190 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) | |
| 191 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) | |
| 192 | nelne2 | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑦 ≠ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) | |
| 193 | 190 191 192 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ≠ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
| 194 | 87 166 | syl | ⊢ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
| 195 | 194 | necon3ai | ⊢ ( 𝑦 ≠ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ¬ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) |
| 196 | biorf | ⊢ ( ¬ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ↔ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) ) | |
| 197 | 193 195 196 | 3syl | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ↔ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) ) |
| 198 | orcom | ⊢ ( ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ↔ ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) | |
| 199 | 198 84 | bitr4i | ⊢ ( ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 200 | 197 199 | bitr2di | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
| 201 | vex | ⊢ 𝑧 ∈ V | |
| 202 | 201 | eliniseg | ⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
| 203 | 202 | elv | ⊢ ( 𝑧 ∈ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
| 204 | 201 | eliniseg | ⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
| 205 | 204 | elv | ⊢ ( 𝑧 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) |
| 206 | 200 203 205 | 3bitr4g | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ∈ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ↔ 𝑧 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) |
| 207 | 206 | eqrdv | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) |
| 208 | 189 207 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → 𝑢 = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) |
| 209 | 208 | sqxpeqd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 × 𝑢 ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) |
| 210 | 209 | ineq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
| 211 | indir | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) | |
| 212 | inxp | ⊢ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) | |
| 213 | incom | ⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 214 | cnvimass | ⊢ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ⊆ dom ( 𝑊 ‘ 𝑋 ) | |
| 215 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 216 | dmss | ⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) | |
| 217 | 215 216 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 218 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
| 219 | 217 218 | sseqtrdi | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ 𝑋 ) |
| 220 | 214 219 | sstrid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ⊆ 𝑋 ) |
| 221 | 220 191 | ssneldd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) |
| 222 | disjsn | ⊢ ( ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) | |
| 223 | 221 222 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ) |
| 224 | 213 223 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) = ∅ ) |
| 225 | 224 | xpeq2d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ∅ ) ) |
| 226 | xp0 | ⊢ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ∅ ) = ∅ | |
| 227 | 225 226 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ∅ ) |
| 228 | 212 227 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ∅ ) |
| 229 | 228 | uneq2d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ∅ ) ) |
| 230 | 211 229 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ∅ ) ) |
| 231 | un0 | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ∅ ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) | |
| 232 | 230 231 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
| 233 | 232 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
| 234 | 210 233 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
| 235 | 208 234 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) ) |
| 236 | 235 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
| 237 | 188 236 | sbcied | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
| 238 | 177 237 | mpbird | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 239 | 166 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
| 240 | 239 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) = 𝑦 ) |
| 241 | 187 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) |
| 242 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) | |
| 243 | 239 | eleq1d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) ) ) |
| 244 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 245 | rnss | ⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → ran ( 𝑊 ‘ 𝑋 ) ⊆ ran ( 𝑋 × 𝑋 ) ) | |
| 246 | 244 245 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ran ( 𝑊 ‘ 𝑋 ) ⊆ ran ( 𝑋 × 𝑋 ) ) |
| 247 | df-rn | ⊢ ran ( 𝑊 ‘ 𝑋 ) = dom ◡ ( 𝑊 ‘ 𝑋 ) | |
| 248 | rnxpid | ⊢ ran ( 𝑋 × 𝑋 ) = 𝑋 | |
| 249 | 246 247 248 | 3sstr3g | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → dom ◡ ( 𝑊 ‘ 𝑋 ) ⊆ 𝑋 ) |
| 250 | 249 | sseld | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
| 251 | 243 250 | sylbid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
| 252 | 242 251 | mtod | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) ) |
| 253 | ndmima | ⊢ ( ¬ 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) = ∅ ) | |
| 254 | 252 253 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) = ∅ ) |
| 255 | 239 | sneqd | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → { 𝑦 } = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
| 256 | 255 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) = ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
| 257 | df-ima | ⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ran ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 258 | cnvxp | ⊢ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) | |
| 259 | 258 | reseq1i | ⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
| 260 | ssid | ⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } | |
| 261 | xpssres | ⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ) | |
| 262 | 260 261 | ax-mp | ⊢ ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) |
| 263 | 259 262 | eqtri | ⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) |
| 264 | 263 | rneqi | ⊢ ran ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ran ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) |
| 265 | 46 | snnz | ⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ≠ ∅ |
| 266 | rnxp | ⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ≠ ∅ → ran ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) = 𝑋 ) | |
| 267 | 265 266 | ax-mp | ⊢ ran ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) = 𝑋 |
| 268 | 264 267 | eqtri | ⊢ ran ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = 𝑋 |
| 269 | 257 268 | eqtri | ⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = 𝑋 |
| 270 | 256 269 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) = 𝑋 ) |
| 271 | 254 270 | uneq12d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∪ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) ) = ( ∅ ∪ 𝑋 ) ) |
| 272 | cnvun | ⊢ ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) = ( ◡ ( 𝑊 ‘ 𝑋 ) ∪ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) | |
| 273 | 272 | imaeq1i | ⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) ∪ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) |
| 274 | imaundir | ⊢ ( ( ◡ ( 𝑊 ‘ 𝑋 ) ∪ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∪ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) ) | |
| 275 | 273 274 | eqtri | ⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∪ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) ) |
| 276 | un0 | ⊢ ( 𝑋 ∪ ∅ ) = 𝑋 | |
| 277 | uncom | ⊢ ( 𝑋 ∪ ∅ ) = ( ∅ ∪ 𝑋 ) | |
| 278 | 276 277 | eqtr3i | ⊢ 𝑋 = ( ∅ ∪ 𝑋 ) |
| 279 | 271 275 278 | 3eqtr4g | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = 𝑋 ) |
| 280 | 189 279 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → 𝑢 = 𝑋 ) |
| 281 | 280 | sqxpeqd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 × 𝑢 ) = ( 𝑋 × 𝑋 ) ) |
| 282 | 281 | ineq2d | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) ) |
| 283 | indir | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) ) | |
| 284 | dfss2 | ⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ↔ ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) | |
| 285 | 244 284 | sylib | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
| 286 | incom | ⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) = ( 𝑋 ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) | |
| 287 | disjsn | ⊢ ( ( 𝑋 ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) | |
| 288 | 242 287 | sylibr | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑋 ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ) |
| 289 | 286 288 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) = ∅ ) |
| 290 | 289 | xpeq2d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑋 × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) ) = ( 𝑋 × ∅ ) ) |
| 291 | xpindi | ⊢ ( 𝑋 × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) ) = ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) | |
| 292 | xp0 | ⊢ ( 𝑋 × ∅ ) = ∅ | |
| 293 | 290 291 292 | 3eqtr3g | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) = ∅ ) |
| 294 | 285 293 | uneq12d | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) ) = ( ( 𝑊 ‘ 𝑋 ) ∪ ∅ ) ) |
| 295 | 283 294 | eqtrid | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∪ ∅ ) ) |
| 296 | un0 | ⊢ ( ( 𝑊 ‘ 𝑋 ) ∪ ∅ ) = ( 𝑊 ‘ 𝑋 ) | |
| 297 | 295 296 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
| 298 | 297 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
| 299 | 282 298 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
| 300 | 280 299 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
| 301 | 300 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) = 𝑦 ) ) |
| 302 | 241 301 | sbcied | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) = 𝑦 ) ) |
| 303 | 240 302 | mpbird | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 304 | 238 303 | jaodan | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 305 | 135 304 | sylan2b | ⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 306 | 305 | ralrimiva | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 307 | 175 306 | jca | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 308 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ↔ ( ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) ∧ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 309 | 308 | adantr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ↔ ( ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) ∧ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 310 | 34 307 309 | mpbir2and | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
| 311 | 1 | relopabiv | ⊢ Rel 𝑊 |
| 312 | 311 | releldmi | ⊢ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ dom 𝑊 ) |
| 313 | elssuni | ⊢ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ dom 𝑊 → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ∪ dom 𝑊 ) | |
| 314 | 310 312 313 | 3syl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ∪ dom 𝑊 ) |
| 315 | 314 4 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ) |
| 316 | 5 315 | sstrid | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ 𝑋 ) |
| 317 | 46 | snss | ⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ↔ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ 𝑋 ) |
| 318 | 316 317 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
| 319 | 318 | pm2.18da | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |