This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for union of classes. Exercise 6 of TakeutiZaring p. 17. (Contributed by NM, 25-Jun-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uncom | ⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴 ) ) | |
| 2 | elun | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴 ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ( 𝐵 ∪ 𝐴 ) ) |
| 4 | 3 | uneqri | ⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) |