This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 19-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2lem3.4 | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | ||
| Assertion | fpwwe2lem3 | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2lem3.4 | ⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) | |
| 4 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 5 | 3 4 | mpbid | ⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 6 | 5 | simprrd | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 7 | sneq | ⊢ ( 𝑦 = 𝐵 → { 𝑦 } = { 𝐵 } ) | |
| 8 | 7 | imaeq2d | ⊢ ( 𝑦 = 𝐵 → ( ◡ 𝑅 “ { 𝑦 } ) = ( ◡ 𝑅 “ { 𝐵 } ) ) |
| 9 | eqeq2 | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) ) | |
| 10 | 8 9 | sbceqbid | ⊢ ( 𝑦 = 𝐵 → ( [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) ) |
| 11 | 10 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ∧ 𝐵 ∈ 𝑋 ) → [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) |
| 12 | 6 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) |
| 13 | cnvimass | ⊢ ( ◡ 𝑅 “ { 𝐵 } ) ⊆ dom 𝑅 | |
| 14 | 1 | relopabiv | ⊢ Rel 𝑊 |
| 15 | 14 | brrelex2i | ⊢ ( 𝑋 𝑊 𝑅 → 𝑅 ∈ V ) |
| 16 | dmexg | ⊢ ( 𝑅 ∈ V → dom 𝑅 ∈ V ) | |
| 17 | 3 15 16 | 3syl | ⊢ ( 𝜑 → dom 𝑅 ∈ V ) |
| 18 | ssexg | ⊢ ( ( ( ◡ 𝑅 “ { 𝐵 } ) ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V ) → ( ◡ 𝑅 “ { 𝐵 } ) ∈ V ) | |
| 19 | 13 17 18 | sylancr | ⊢ ( 𝜑 → ( ◡ 𝑅 “ { 𝐵 } ) ∈ V ) |
| 20 | id | ⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) ) | |
| 21 | 20 | sqxpeqd | ⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( 𝑢 × 𝑢 ) = ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) |
| 22 | 21 | ineq2d | ⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) |
| 23 | 20 22 | oveq12d | ⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) ) |
| 24 | 23 | eqeq1d | ⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
| 25 | 24 | sbcieg | ⊢ ( ( ◡ 𝑅 “ { 𝐵 } ) ∈ V → ( [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
| 26 | 19 25 | syl | ⊢ ( 𝜑 → ( [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
| 28 | 12 27 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) |