This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif ). Theorem 35 of Suppes p. 29. (Contributed by NM, 19-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undif1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undir | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) | |
| 2 | invdif | ⊢ ( 𝐴 ∩ ( V ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
| 3 | 2 | uneq1i | ⊢ ( ( 𝐴 ∩ ( V ∖ 𝐵 ) ) ∪ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
| 4 | uncom | ⊢ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( V ∖ 𝐵 ) ) | |
| 5 | unvdif | ⊢ ( 𝐵 ∪ ( V ∖ 𝐵 ) ) = V | |
| 6 | 4 5 | eqtri | ⊢ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) = V |
| 7 | 6 | ineq2i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) ∩ V ) |
| 8 | inv1 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ V ) = ( 𝐴 ∪ 𝐵 ) | |
| 9 | 7 8 | eqtri | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( V ∖ 𝐵 ) ∪ 𝐵 ) ) = ( 𝐴 ∪ 𝐵 ) |
| 10 | 1 3 9 | 3eqtr3i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |