This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024) (Proof shortened by Matthew House, 10-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| Assertion | fpwwe2lem4 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝐴 ∈ 𝑉 ) |
| 5 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑋 ⊆ 𝐴 ) | |
| 6 | 4 5 | ssexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑋 ∈ V ) |
| 7 | 6 6 | xpexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
| 8 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 9 | 7 8 | ssexd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑅 ∈ V ) |
| 10 | simpl | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → 𝑥 = 𝑋 ) | |
| 11 | 10 | sseq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) |
| 12 | simpr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) | |
| 13 | 10 | sqxpeqd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑥 × 𝑥 ) = ( 𝑋 × 𝑋 ) ) |
| 14 | 12 13 | sseq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 15 | 12 10 | weeq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑟 We 𝑥 ↔ 𝑅 We 𝑋 ) ) |
| 16 | 11 14 15 | 3anbi123d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) ) |
| 17 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑥 𝐹 𝑟 ) = ( 𝑋 𝐹 𝑅 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ↔ ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) → ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) ) ) |
| 20 | 3 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) ) |
| 22 | 6 9 19 21 | vtocl2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) → ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) ) |
| 23 | 22 | syldbl2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) |