This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sssn | ⊢ ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝐵 } ) ) | |
| 3 | elsni | ⊢ ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 ) | |
| 4 | 2 3 | syl6 | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → 𝑥 = 𝐵 ) ) |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 6 | 4 5 | syl6 | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) ) |
| 7 | 6 | ibd | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 8 | 7 | exlimdv | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
| 9 | 1 8 | biimtrid | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → 𝐵 ∈ 𝐴 ) ) |
| 10 | snssi | ⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) | |
| 11 | 9 10 | syl6 | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → { 𝐵 } ⊆ 𝐴 ) ) |
| 12 | 11 | anc2li | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → ( 𝐴 ⊆ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) ) ) |
| 13 | eqss | ⊢ ( 𝐴 = { 𝐵 } ↔ ( 𝐴 ⊆ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) ) | |
| 14 | 12 13 | imbitrrdi | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → 𝐴 = { 𝐵 } ) ) |
| 15 | 14 | orrd | ⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |
| 16 | 0ss | ⊢ ∅ ⊆ { 𝐵 } | |
| 17 | sseq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ⊆ { 𝐵 } ↔ ∅ ⊆ { 𝐵 } ) ) | |
| 18 | 16 17 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ⊆ { 𝐵 } ) |
| 19 | eqimss | ⊢ ( 𝐴 = { 𝐵 } → 𝐴 ⊆ { 𝐵 } ) | |
| 20 | 18 19 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) → 𝐴 ⊆ { 𝐵 } ) |
| 21 | 15 20 | impbii | ⊢ ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |