This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 3-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| Assertion | fpwwe2cbv | ⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | simpl | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → 𝑥 = 𝑎 ) | |
| 3 | 2 | sseq1d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴 ) ) |
| 4 | simpr | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → 𝑟 = 𝑠 ) | |
| 5 | 2 | sqxpeqd | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
| 6 | 4 5 | sseq12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) |
| 7 | 3 6 | anbi12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) ) |
| 8 | 4 2 | weeq12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑟 We 𝑥 ↔ 𝑠 We 𝑎 ) ) |
| 9 | id | ⊢ ( 𝑢 = 𝑣 → 𝑢 = 𝑣 ) | |
| 10 | 9 | sqxpeqd | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 × 𝑢 ) = ( 𝑣 × 𝑣 ) ) |
| 11 | 10 | ineq2d | ⊢ ( 𝑢 = 𝑣 → ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) |
| 12 | 9 11 | oveq12d | ⊢ ( 𝑢 = 𝑣 → ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) ) |
| 13 | 12 | eqeq1d | ⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ) ) |
| 14 | 13 | cbvsbcvw | ⊢ ( [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ) |
| 15 | sneq | ⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) | |
| 16 | 15 | imaeq2d | ⊢ ( 𝑦 = 𝑧 → ( ◡ 𝑟 “ { 𝑦 } ) = ( ◡ 𝑟 “ { 𝑧 } ) ) |
| 17 | eqeq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ↔ ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) | |
| 18 | 16 17 | sbceqbid | ⊢ ( 𝑦 = 𝑧 → ( [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
| 19 | 14 18 | bitrid | ⊢ ( 𝑦 = 𝑧 → ( [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
| 20 | 19 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ∀ 𝑧 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) |
| 21 | 4 | cnveqd | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ◡ 𝑟 = ◡ 𝑠 ) |
| 22 | 21 | imaeq1d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ◡ 𝑟 “ { 𝑧 } ) = ( ◡ 𝑠 “ { 𝑧 } ) ) |
| 23 | 4 | ineq1d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) = ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) ) |
| 25 | 24 | eqeq1d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
| 26 | 22 25 | sbceqbid | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
| 27 | 2 26 | raleqbidv | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ∀ 𝑧 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
| 28 | 20 27 | bitrid | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
| 29 | 8 28 | anbi12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ↔ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) ) |
| 30 | 7 29 | anbi12d | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) ) ) |
| 31 | 30 | cbvopabv | ⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } |
| 32 | 1 31 | eqtri | ⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } |