This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of well-ordering. Definition 6.24(2) of TakeutiZaring p. 30. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfwe2 | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-we | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ) | |
| 2 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 3 | simpr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) | |
| 4 | ax-1 | ⊢ ( 𝑥 𝑅 𝑧 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
| 5 | 4 | a1i | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑧 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 6 | fr2nr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) | |
| 7 | 6 | 3adantr3 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) |
| 8 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) | |
| 9 | 8 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 10 | 9 | notbid | ⊢ ( 𝑥 = 𝑧 → ( ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 11 | 7 10 | syl5ibcom | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 = 𝑧 → ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 12 | pm2.21 | ⊢ ( ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
| 13 | 11 12 | syl6 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 = 𝑧 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 14 | fr3nr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ¬ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ∧ 𝑧 𝑅 𝑥 ) ) | |
| 15 | df-3an | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ∧ 𝑧 𝑅 𝑥 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ∧ 𝑧 𝑅 𝑥 ) ) | |
| 16 | 15 | biimpri | ⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ∧ 𝑧 𝑅 𝑥 ) → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ∧ 𝑧 𝑅 𝑥 ) ) |
| 17 | 16 | ancoms | ⊢ ( ( 𝑧 𝑅 𝑥 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ∧ 𝑧 𝑅 𝑥 ) ) |
| 18 | 14 17 | nsyl | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ¬ ( 𝑧 𝑅 𝑥 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 19 | 18 | pm2.21d | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 𝑅 𝑥 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) ) |
| 20 | 19 | expd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑧 𝑅 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 21 | 5 13 20 | 3jaod | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
| 22 | frirr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) | |
| 23 | 22 | 3ad2antr1 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ¬ 𝑥 𝑅 𝑥 ) |
| 24 | 21 23 | jctild | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 25 | 24 | ex | ⊢ ( 𝑅 Fr 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) ) |
| 26 | 25 | a2d | ⊢ ( 𝑅 Fr 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) ) |
| 27 | 26 | alimdv | ⊢ ( 𝑅 Fr 𝐴 → ( ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) → ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) ) |
| 28 | 27 | 2alimdv | ⊢ ( 𝑅 Fr 𝐴 → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) ) |
| 29 | r3al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) ) | |
| 30 | r3al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) | |
| 31 | 28 29 30 | 3imtr4g | ⊢ ( 𝑅 Fr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) ) |
| 32 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑧 ) ) | |
| 33 | equequ2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) | |
| 34 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) | |
| 35 | 32 33 34 | 3orbi123d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) ) |
| 36 | 35 | ralidmw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 37 | 35 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) |
| 38 | 37 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) |
| 39 | 36 38 | bitr3i | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) |
| 40 | 39 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) |
| 41 | df-po | ⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 𝑅 𝑥 ∧ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) | |
| 42 | 31 40 41 | 3imtr4g | ⊢ ( 𝑅 Fr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → 𝑅 Po 𝐴 ) ) |
| 43 | 42 | ancrd | ⊢ ( 𝑅 Fr 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) ) |
| 44 | 3 43 | impbid2 | ⊢ ( 𝑅 Fr 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 45 | 2 44 | bitrid | ⊢ ( 𝑅 Fr 𝐴 → ( 𝑅 Or 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 46 | 45 | pm5.32i | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴 ) ↔ ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 47 | 1 46 | bitri | ⊢ ( 𝑅 We 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |