This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the subclass relationship between two classes. Exercise 9 of TakeutiZaring p. 18. This was the original definition before df-ss . (Contributed by NM, 27-Apr-1994) Revise df-ss . (Revised by GG, 15-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | ⊢ ( { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ↔ 𝑥 ∈ 𝐴 ) ) | |
| 2 | df-in | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } | |
| 3 | 2 | eqeq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 ↔ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } = 𝐴 ) |
| 4 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 5 | simp2 | ⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) | |
| 6 | 5 | 3expib | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) ) |
| 7 | ancl | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) | |
| 8 | 6 7 | impbid | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 9 | dfbi2 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) ) | |
| 10 | pm2.21 | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 11 | pm3.4 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 12 | 10 11 | ja | ⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 13 | 9 12 | simplbiim | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 14 | 8 13 | impbii | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 15 | df-clab | ⊢ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ↔ [ 𝑥 / 𝑦 ] ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 16 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 17 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 18 | 16 17 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 19 | 18 | sbievw | ⊢ ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 20 | 15 19 | bitr2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ) |
| 21 | 20 | bibi1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ↔ 𝑥 ∈ 𝐴 ) ) |
| 22 | 14 21 | bitri | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ↔ 𝑥 ∈ 𝐴 ) ) |
| 23 | 22 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ↔ 𝑥 ∈ 𝐴 ) ) |
| 24 | 4 23 | bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ↔ 𝑥 ∈ 𝐴 ) ) |
| 25 | 1 3 24 | 3bitr4ri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |