This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | jaodan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| jaodan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) | ||
| Assertion | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | jaodan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) | |
| 3 | 1 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 4 | 2 | ex | ⊢ ( 𝜑 → ( 𝜃 → 𝜒 ) ) |
| 5 | 3 4 | jaod | ⊢ ( 𝜑 → ( ( 𝜓 ∨ 𝜃 ) → 𝜒 ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜒 ) |