This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of an element of a class is a subset of the class (inference form of snssg ). Theorem 7.4 of Quine p. 49. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | snss.1 | ⊢ 𝐴 ∈ V | |
| Assertion | snss | ⊢ ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | ⊢ 𝐴 ∈ V | |
| 2 | snssg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ⊆ 𝐵 ) |