This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Proof shortened by Peter Mazsa, 23-Sep-2022) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | ||
| Assertion | fpwwe2lem11 | ⊢ ( 𝜑 → 𝑋 ∈ dom 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | |
| 5 | vex | ⊢ 𝑎 ∈ V | |
| 6 | 5 | eldm | ⊢ ( 𝑎 ∈ dom 𝑊 ↔ ∃ 𝑠 𝑎 𝑊 𝑠 ) |
| 7 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑠 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 8 | 7 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ⊆ 𝐴 ) |
| 10 | velpw | ⊢ ( 𝑎 ∈ 𝒫 𝐴 ↔ 𝑎 ⊆ 𝐴 ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ∈ 𝒫 𝐴 ) |
| 12 | 11 | ex | ⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 → 𝑎 ∈ 𝒫 𝐴 ) ) |
| 13 | 12 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑠 𝑎 𝑊 𝑠 → 𝑎 ∈ 𝒫 𝐴 ) ) |
| 14 | 6 13 | biimtrid | ⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 → 𝑎 ∈ 𝒫 𝐴 ) ) |
| 15 | 14 | ssrdv | ⊢ ( 𝜑 → dom 𝑊 ⊆ 𝒫 𝐴 ) |
| 16 | sspwuni | ⊢ ( dom 𝑊 ⊆ 𝒫 𝐴 ↔ ∪ dom 𝑊 ⊆ 𝐴 ) | |
| 17 | 15 16 | sylib | ⊢ ( 𝜑 → ∪ dom 𝑊 ⊆ 𝐴 ) |
| 18 | 4 17 | eqsstrid | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
| 19 | vex | ⊢ 𝑠 ∈ V | |
| 20 | 19 | elrn | ⊢ ( 𝑠 ∈ ran 𝑊 ↔ ∃ 𝑎 𝑎 𝑊 𝑠 ) |
| 21 | 8 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
| 22 | 1 | relopabiv | ⊢ Rel 𝑊 |
| 23 | 22 | releldmi | ⊢ ( 𝑎 𝑊 𝑠 → 𝑎 ∈ dom 𝑊 ) |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ∈ dom 𝑊 ) |
| 25 | elssuni | ⊢ ( 𝑎 ∈ dom 𝑊 → 𝑎 ⊆ ∪ dom 𝑊 ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ⊆ ∪ dom 𝑊 ) |
| 27 | 26 4 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ⊆ 𝑋 ) |
| 28 | xpss12 | ⊢ ( ( 𝑎 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑋 ) → ( 𝑎 × 𝑎 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 29 | 27 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑎 × 𝑎 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 30 | 21 29 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) |
| 31 | velpw | ⊢ ( 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 32 | 30 31 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 33 | 32 | ex | ⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
| 34 | 33 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
| 35 | 20 34 | biimtrid | ⊢ ( 𝜑 → ( 𝑠 ∈ ran 𝑊 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
| 36 | 35 | ssrdv | ⊢ ( 𝜑 → ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 37 | sspwuni | ⊢ ( ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 38 | 36 37 | sylib | ⊢ ( 𝜑 → ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) |
| 39 | 18 38 | jca | ⊢ ( 𝜑 → ( 𝑋 ⊆ 𝐴 ∧ ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 40 | n0 | ⊢ ( 𝑛 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑛 ) | |
| 41 | ssel2 | ⊢ ( ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) → 𝑦 ∈ 𝑋 ) | |
| 42 | 41 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → 𝑦 ∈ 𝑋 ) |
| 43 | 4 | eleq2i | ⊢ ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ dom 𝑊 ) |
| 44 | eluni2 | ⊢ ( 𝑦 ∈ ∪ dom 𝑊 ↔ ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ) | |
| 45 | 43 44 | bitri | ⊢ ( 𝑦 ∈ 𝑋 ↔ ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ) |
| 46 | 42 45 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ) |
| 47 | 5 | inex2 | ⊢ ( 𝑛 ∩ 𝑎 ) ∈ V |
| 48 | 47 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑛 ∩ 𝑎 ) ∈ V ) |
| 49 | 7 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑠 We 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑠 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 50 | 49 | simpld | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 We 𝑎 ) |
| 51 | 50 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 We 𝑎 ) |
| 52 | wefr | ⊢ ( 𝑠 We 𝑎 → 𝑠 Fr 𝑎 ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 Fr 𝑎 ) |
| 54 | inss2 | ⊢ ( 𝑛 ∩ 𝑎 ) ⊆ 𝑎 | |
| 55 | 54 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑛 ∩ 𝑎 ) ⊆ 𝑎 ) |
| 56 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑦 ∈ 𝑛 ) | |
| 57 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑦 ∈ 𝑎 ) | |
| 58 | inelcm | ⊢ ( ( 𝑦 ∈ 𝑛 ∧ 𝑦 ∈ 𝑎 ) → ( 𝑛 ∩ 𝑎 ) ≠ ∅ ) | |
| 59 | 56 57 58 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑛 ∩ 𝑎 ) ≠ ∅ ) |
| 60 | fri | ⊢ ( ( ( ( 𝑛 ∩ 𝑎 ) ∈ V ∧ 𝑠 Fr 𝑎 ) ∧ ( ( 𝑛 ∩ 𝑎 ) ⊆ 𝑎 ∧ ( 𝑛 ∩ 𝑎 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) | |
| 61 | 48 53 55 59 60 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∃ 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) |
| 62 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ) | |
| 63 | 62 | elin1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → 𝑣 ∈ 𝑛 ) |
| 64 | simplrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) | |
| 65 | ralnex | ⊢ ( ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ↔ ¬ ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) | |
| 66 | 64 65 | sylib | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ¬ ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
| 67 | df-br | ⊢ ( 𝑤 ∪ ran 𝑊 𝑣 ↔ 〈 𝑤 , 𝑣 〉 ∈ ∪ ran 𝑊 ) | |
| 68 | eluni2 | ⊢ ( 〈 𝑤 , 𝑣 〉 ∈ ∪ ran 𝑊 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑤 , 𝑣 〉 ∈ 𝑡 ) | |
| 69 | 67 68 | bitri | ⊢ ( 𝑤 ∪ ran 𝑊 𝑣 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑤 , 𝑣 〉 ∈ 𝑡 ) |
| 70 | vex | ⊢ 𝑡 ∈ V | |
| 71 | 70 | elrn | ⊢ ( 𝑡 ∈ ran 𝑊 ↔ ∃ 𝑏 𝑏 𝑊 𝑡 ) |
| 72 | df-br | ⊢ ( 𝑤 𝑡 𝑣 ↔ 〈 𝑤 , 𝑣 〉 ∈ 𝑡 ) | |
| 73 | simprll | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 ∈ 𝑛 ) | |
| 74 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑛 ) |
| 75 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 𝑡 𝑣 ) | |
| 76 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝜑 ) | |
| 77 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑎 𝑊 𝑠 ) | |
| 78 | 77 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑎 𝑊 𝑠 ) |
| 79 | simprlr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑏 𝑊 𝑡 ) | |
| 80 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑏 𝑊 𝑡 ) | |
| 81 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑏 𝑊 𝑡 ↔ ( ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ∧ ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 82 | 81 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑏 𝑊 𝑡 ↔ ( ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ∧ ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 83 | 80 82 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ∧ ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 84 | 83 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ) |
| 85 | 84 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) |
| 86 | 76 78 79 85 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) |
| 87 | 86 | ssbrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → ( 𝑤 𝑡 𝑣 → 𝑤 ( 𝑏 × 𝑏 ) 𝑣 ) ) |
| 88 | 75 87 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 ( 𝑏 × 𝑏 ) 𝑣 ) |
| 89 | brxp | ⊢ ( 𝑤 ( 𝑏 × 𝑏 ) 𝑣 ↔ ( 𝑤 ∈ 𝑏 ∧ 𝑣 ∈ 𝑏 ) ) | |
| 90 | 89 | simplbi | ⊢ ( 𝑤 ( 𝑏 × 𝑏 ) 𝑣 → 𝑤 ∈ 𝑏 ) |
| 91 | 88 90 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 ∈ 𝑏 ) |
| 92 | 91 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑏 ) |
| 93 | 62 | elin2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → 𝑣 ∈ 𝑎 ) |
| 94 | 93 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑣 ∈ 𝑎 ) |
| 95 | simplrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 𝑡 𝑣 ) | |
| 96 | brinxp2 | ⊢ ( 𝑤 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑣 ↔ ( ( 𝑤 ∈ 𝑏 ∧ 𝑣 ∈ 𝑎 ) ∧ 𝑤 𝑡 𝑣 ) ) | |
| 97 | 92 94 95 96 | syl21anbrc | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑣 ) |
| 98 | simprr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) | |
| 99 | 98 | breqd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑤 𝑠 𝑣 ↔ 𝑤 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑣 ) ) |
| 100 | 97 99 | mpbird | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 𝑠 𝑣 ) |
| 101 | 76 78 21 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
| 102 | 101 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
| 103 | 102 | ssbrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑤 𝑠 𝑣 → 𝑤 ( 𝑎 × 𝑎 ) 𝑣 ) ) |
| 104 | 100 103 | mpd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ( 𝑎 × 𝑎 ) 𝑣 ) |
| 105 | brxp | ⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑣 ↔ ( 𝑤 ∈ 𝑎 ∧ 𝑣 ∈ 𝑎 ) ) | |
| 106 | 105 | simplbi | ⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑣 → 𝑤 ∈ 𝑎 ) |
| 107 | 104 106 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
| 108 | 74 107 | elind | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ ( 𝑛 ∩ 𝑎 ) ) |
| 109 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝑠 𝑣 ↔ 𝑤 𝑠 𝑣 ) ) | |
| 110 | 109 | rspcev | ⊢ ( ( 𝑤 ∈ ( 𝑛 ∩ 𝑎 ) ∧ 𝑤 𝑠 𝑣 ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
| 111 | 108 100 110 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
| 112 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑛 ) |
| 113 | simprl | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑏 ⊆ 𝑎 ) | |
| 114 | 91 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑏 ) |
| 115 | 113 114 | sseldd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
| 116 | 112 115 | elind | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ ( 𝑛 ∩ 𝑎 ) ) |
| 117 | simplrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 𝑡 𝑣 ) | |
| 118 | simprr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) | |
| 119 | inss1 | ⊢ ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ⊆ 𝑠 | |
| 120 | 118 119 | eqsstrdi | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 ⊆ 𝑠 ) |
| 121 | 120 | ssbrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑤 𝑡 𝑣 → 𝑤 𝑠 𝑣 ) ) |
| 122 | 117 121 | mpd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 𝑠 𝑣 ) |
| 123 | 116 122 110 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
| 124 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝐴 ∈ 𝑉 ) |
| 125 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 126 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑎 𝑊 𝑠 ) | |
| 127 | 1 124 125 126 80 | fpwwe2lem9 | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
| 128 | 76 78 79 127 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
| 129 | 111 123 128 | mpjaodan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
| 130 | 129 | expr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑤 𝑡 𝑣 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
| 131 | 72 130 | biimtrrid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ) → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
| 132 | 131 | expr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) ) |
| 133 | 132 | exlimdv | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( ∃ 𝑏 𝑏 𝑊 𝑡 → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) ) |
| 134 | 71 133 | biimtrid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( 𝑡 ∈ ran 𝑊 → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) ) |
| 135 | 134 | rexlimdv | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( ∃ 𝑡 ∈ ran 𝑊 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
| 136 | 69 135 | biimtrid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( 𝑤 ∪ ran 𝑊 𝑣 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
| 137 | 66 136 | mtod | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
| 138 | 137 | ralrimiva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
| 139 | 61 63 138 | reximssdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
| 140 | 139 | exp32 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) ) |
| 141 | 140 | exlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( ∃ 𝑠 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) ) |
| 142 | 6 141 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( 𝑎 ∈ dom 𝑊 → ( 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) ) |
| 143 | 142 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
| 144 | 46 143 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
| 145 | 144 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ⊆ 𝑋 ) → ( 𝑦 ∈ 𝑛 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
| 146 | 145 | exlimdv | ⊢ ( ( 𝜑 ∧ 𝑛 ⊆ 𝑋 ) → ( ∃ 𝑦 𝑦 ∈ 𝑛 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
| 147 | 40 146 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑛 ⊆ 𝑋 ) → ( 𝑛 ≠ ∅ → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
| 148 | 147 | expimpd | ⊢ ( 𝜑 → ( ( 𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
| 149 | 148 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑛 ( ( 𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
| 150 | df-fr | ⊢ ( ∪ ran 𝑊 Fr 𝑋 ↔ ∀ 𝑛 ( ( 𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) | |
| 151 | 149 150 | sylibr | ⊢ ( 𝜑 → ∪ ran 𝑊 Fr 𝑋 ) |
| 152 | 4 | eleq2i | ⊢ ( 𝑤 ∈ 𝑋 ↔ 𝑤 ∈ ∪ dom 𝑊 ) |
| 153 | eluni2 | ⊢ ( 𝑤 ∈ ∪ dom 𝑊 ↔ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) | |
| 154 | 152 153 | bitri | ⊢ ( 𝑤 ∈ 𝑋 ↔ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) |
| 155 | 45 154 | anbi12i | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ↔ ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ∧ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) ) |
| 156 | reeanv | ⊢ ( ∃ 𝑎 ∈ dom 𝑊 ∃ 𝑏 ∈ dom 𝑊 ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ↔ ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ∧ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) ) | |
| 157 | 155 156 | bitr4i | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ↔ ∃ 𝑎 ∈ dom 𝑊 ∃ 𝑏 ∈ dom 𝑊 ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) |
| 158 | vex | ⊢ 𝑏 ∈ V | |
| 159 | 158 | eldm | ⊢ ( 𝑏 ∈ dom 𝑊 ↔ ∃ 𝑡 𝑏 𝑊 𝑡 ) |
| 160 | 6 159 | anbi12i | ⊢ ( ( 𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊 ) ↔ ( ∃ 𝑠 𝑎 𝑊 𝑠 ∧ ∃ 𝑡 𝑏 𝑊 𝑡 ) ) |
| 161 | exdistrv | ⊢ ( ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ↔ ( ∃ 𝑠 𝑎 𝑊 𝑠 ∧ ∃ 𝑡 𝑏 𝑊 𝑡 ) ) | |
| 162 | 160 161 | bitr4i | ⊢ ( ( 𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊 ) ↔ ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) |
| 163 | 83 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 164 | 163 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑡 We 𝑏 ) |
| 165 | 164 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 We 𝑏 ) |
| 166 | weso | ⊢ ( 𝑡 We 𝑏 → 𝑡 Or 𝑏 ) | |
| 167 | 165 166 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 Or 𝑏 ) |
| 168 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑎 ⊆ 𝑏 ) | |
| 169 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑦 ∈ 𝑎 ) | |
| 170 | 168 169 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑦 ∈ 𝑏 ) |
| 171 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑏 ) | |
| 172 | solin | ⊢ ( ( 𝑡 Or 𝑏 ∧ ( 𝑦 ∈ 𝑏 ∧ 𝑤 ∈ 𝑏 ) ) → ( 𝑦 𝑡 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑡 𝑦 ) ) | |
| 173 | 167 170 171 172 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 𝑡 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑡 𝑦 ) ) |
| 174 | 22 | relelrni | ⊢ ( 𝑏 𝑊 𝑡 → 𝑡 ∈ ran 𝑊 ) |
| 175 | 174 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑡 ∈ ran 𝑊 ) |
| 176 | 175 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 ∈ ran 𝑊 ) |
| 177 | elssuni | ⊢ ( 𝑡 ∈ ran 𝑊 → 𝑡 ⊆ ∪ ran 𝑊 ) | |
| 178 | 176 177 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 ⊆ ∪ ran 𝑊 ) |
| 179 | 178 | ssbrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 𝑡 𝑤 → 𝑦 ∪ ran 𝑊 𝑤 ) ) |
| 180 | idd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) ) | |
| 181 | 178 | ssbrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑤 𝑡 𝑦 → 𝑤 ∪ ran 𝑊 𝑦 ) ) |
| 182 | 179 180 181 | 3orim123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( ( 𝑦 𝑡 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑡 𝑦 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
| 183 | 173 182 | mpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
| 184 | 50 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑠 We 𝑎 ) |
| 185 | 184 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 We 𝑎 ) |
| 186 | weso | ⊢ ( 𝑠 We 𝑎 → 𝑠 Or 𝑎 ) | |
| 187 | 185 186 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 Or 𝑎 ) |
| 188 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑦 ∈ 𝑎 ) | |
| 189 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑏 ⊆ 𝑎 ) | |
| 190 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑏 ) | |
| 191 | 189 190 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
| 192 | solin | ⊢ ( ( 𝑠 Or 𝑎 ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( 𝑦 𝑠 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑠 𝑦 ) ) | |
| 193 | 187 188 191 192 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 𝑠 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑠 𝑦 ) ) |
| 194 | 22 | relelrni | ⊢ ( 𝑎 𝑊 𝑠 → 𝑠 ∈ ran 𝑊 ) |
| 195 | 194 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑠 ∈ ran 𝑊 ) |
| 196 | 195 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 ∈ ran 𝑊 ) |
| 197 | elssuni | ⊢ ( 𝑠 ∈ ran 𝑊 → 𝑠 ⊆ ∪ ran 𝑊 ) | |
| 198 | 196 197 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 ⊆ ∪ ran 𝑊 ) |
| 199 | 198 | ssbrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 𝑠 𝑤 → 𝑦 ∪ ran 𝑊 𝑤 ) ) |
| 200 | idd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) ) | |
| 201 | 198 | ssbrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑤 𝑠 𝑦 → 𝑤 ∪ ran 𝑊 𝑦 ) ) |
| 202 | 199 200 201 | 3orim123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( ( 𝑦 𝑠 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑠 𝑦 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
| 203 | 193 202 | mpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
| 204 | 127 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
| 205 | 183 203 204 | mpjaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
| 206 | 205 | exp31 | ⊢ ( 𝜑 → ( ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) → ( ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) ) |
| 207 | 206 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) → ( ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) ) |
| 208 | 162 207 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊 ) → ( ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) ) |
| 209 | 208 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ dom 𝑊 ∃ 𝑏 ∈ dom 𝑊 ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
| 210 | 157 209 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
| 211 | 210 | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
| 212 | dfwe2 | ⊢ ( ∪ ran 𝑊 We 𝑋 ↔ ( ∪ ran 𝑊 Fr 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) | |
| 213 | 151 211 212 | sylanbrc | ⊢ ( 𝜑 → ∪ ran 𝑊 We 𝑋 ) |
| 214 | 1 | fpwwe2cbv | ⊢ 𝑊 = { 〈 𝑧 , 𝑡 〉 ∣ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑧 × 𝑧 ) ) ∧ ( 𝑡 We 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 [ ( ◡ 𝑡 “ { 𝑤 } ) / 𝑏 ] ( 𝑏 𝐹 ( 𝑡 ∩ ( 𝑏 × 𝑏 ) ) ) = 𝑤 ) ) } |
| 215 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝐴 ∈ 𝑉 ) |
| 216 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 𝑊 𝑠 ) | |
| 217 | 214 215 216 | fpwwe2lem3 | ⊢ ( ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) ∧ 𝑦 ∈ 𝑎 ) → ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) |
| 218 | 217 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) |
| 219 | cnvimass | ⊢ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ⊆ dom ∪ ran 𝑊 | |
| 220 | 2 18 | ssexd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 221 | 220 220 | xpexd | ⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) ∈ V ) |
| 222 | 221 38 | ssexd | ⊢ ( 𝜑 → ∪ ran 𝑊 ∈ V ) |
| 223 | 222 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∪ ran 𝑊 ∈ V ) |
| 224 | 223 | dmexd | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → dom ∪ ran 𝑊 ∈ V ) |
| 225 | ssexg | ⊢ ( ( ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ⊆ dom ∪ ran 𝑊 ∧ dom ∪ ran 𝑊 ∈ V ) → ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ∈ V ) | |
| 226 | 219 224 225 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ∈ V ) |
| 227 | id | ⊢ ( 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) → 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) | |
| 228 | olc | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) | |
| 229 | df-br | ⊢ ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ∪ ran 𝑊 ) | |
| 230 | eluni2 | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ∪ ran 𝑊 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑧 , 𝑤 〉 ∈ 𝑡 ) | |
| 231 | 229 230 | bitri | ⊢ ( 𝑧 ∪ ran 𝑊 𝑤 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑧 , 𝑤 〉 ∈ 𝑡 ) |
| 232 | df-br | ⊢ ( 𝑧 𝑡 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ 𝑡 ) | |
| 233 | 85 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) |
| 234 | 233 | ssbrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 ( 𝑏 × 𝑏 ) 𝑤 ) ) |
| 235 | brxp | ⊢ ( 𝑧 ( 𝑏 × 𝑏 ) 𝑤 ↔ ( 𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑏 ) ) | |
| 236 | 235 | simplbi | ⊢ ( 𝑧 ( 𝑏 × 𝑏 ) 𝑤 → 𝑧 ∈ 𝑏 ) |
| 237 | 234 236 | syl6 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 ∈ 𝑏 ) ) |
| 238 | 21 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
| 239 | 238 | ssbrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑤 𝑠 𝑦 → 𝑤 ( 𝑎 × 𝑎 ) 𝑦 ) ) |
| 240 | 239 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 𝑠 𝑦 ) → 𝑤 ( 𝑎 × 𝑎 ) 𝑦 ) |
| 241 | brxp | ⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑦 ↔ ( 𝑤 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎 ) ) | |
| 242 | 241 | simplbi | ⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑦 → 𝑤 ∈ 𝑎 ) |
| 243 | 240 242 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 𝑠 𝑦 ) → 𝑤 ∈ 𝑎 ) |
| 244 | 243 | a1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 𝑠 𝑦 ) → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
| 245 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎 ) ) | |
| 246 | 245 | biimprd | ⊢ ( 𝑤 = 𝑦 → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
| 247 | 246 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 = 𝑦 ) → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
| 248 | 244 247 | jaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
| 249 | 248 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → 𝑤 ∈ 𝑎 ) |
| 250 | 249 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
| 251 | 237 250 | jctird | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → ( 𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑎 ) ) ) |
| 252 | brxp | ⊢ ( 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ↔ ( 𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑎 ) ) | |
| 253 | 251 252 | imbitrrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) |
| 254 | 253 | ancld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → ( 𝑧 𝑡 𝑤 ∧ 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) ) |
| 255 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) | |
| 256 | 255 | breqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑠 𝑤 ↔ 𝑧 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑤 ) ) |
| 257 | brin | ⊢ ( 𝑧 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑤 ↔ ( 𝑧 𝑡 𝑤 ∧ 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) | |
| 258 | 256 257 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑠 𝑤 ↔ ( 𝑧 𝑡 𝑤 ∧ 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) ) |
| 259 | 254 258 | sylibrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 𝑠 𝑤 ) ) |
| 260 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) | |
| 261 | 260 119 | eqsstrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 ⊆ 𝑠 ) |
| 262 | 261 | ssbrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 𝑠 𝑤 ) ) |
| 263 | 127 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
| 264 | 259 262 263 | mpjaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 𝑠 𝑤 ) ) |
| 265 | 232 264 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) |
| 266 | 265 | exp32 | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑦 ∈ 𝑎 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) |
| 267 | 266 | expr | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑏 𝑊 𝑡 → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑦 ∈ 𝑎 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) ) |
| 268 | 267 | com24 | ⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑦 ∈ 𝑎 → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) ) |
| 269 | 268 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) |
| 270 | 269 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) |
| 271 | 270 | exlimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( ∃ 𝑏 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) |
| 272 | 71 271 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑡 ∈ ran 𝑊 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) |
| 273 | 272 | rexlimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( ∃ 𝑡 ∈ ran 𝑊 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) |
| 274 | 231 273 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
| 275 | 228 274 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑤 = 𝑦 ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
| 276 | 275 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) ) |
| 277 | 276 | alrimiv | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∀ 𝑤 ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) ) |
| 278 | breq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 𝑧 ∪ ran 𝑊 𝑦 ) ) | |
| 279 | breq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑧 𝑠 𝑤 ↔ 𝑧 𝑠 𝑦 ) ) | |
| 280 | 278 279 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ↔ ( 𝑧 ∪ ran 𝑊 𝑦 → 𝑧 𝑠 𝑦 ) ) ) |
| 281 | 280 | equsalvw | ⊢ ( ∀ 𝑤 ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) ↔ ( 𝑧 ∪ ran 𝑊 𝑦 → 𝑧 𝑠 𝑦 ) ) |
| 282 | 277 281 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 ∪ ran 𝑊 𝑦 → 𝑧 𝑠 𝑦 ) ) |
| 283 | 194 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 ∈ ran 𝑊 ) |
| 284 | 283 197 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 ⊆ ∪ ran 𝑊 ) |
| 285 | 284 | ssbrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 𝑠 𝑦 → 𝑧 ∪ ran 𝑊 𝑦 ) ) |
| 286 | 282 285 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 ∪ ran 𝑊 𝑦 ↔ 𝑧 𝑠 𝑦 ) ) |
| 287 | vex | ⊢ 𝑧 ∈ V | |
| 288 | 287 | eliniseg | ⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ↔ 𝑧 ∪ ran 𝑊 𝑦 ) ) |
| 289 | 288 | elv | ⊢ ( 𝑧 ∈ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ↔ 𝑧 ∪ ran 𝑊 𝑦 ) |
| 290 | 287 | eliniseg | ⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ↔ 𝑧 𝑠 𝑦 ) ) |
| 291 | 290 | elv | ⊢ ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ↔ 𝑧 𝑠 𝑦 ) |
| 292 | 286 289 291 | 3bitr4g | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 ∈ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ↔ 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ) |
| 293 | 292 | eqrdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) = ( ◡ 𝑠 “ { 𝑦 } ) ) |
| 294 | 227 293 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → 𝑢 = ( ◡ 𝑠 “ { 𝑦 } ) ) |
| 295 | 294 | sqxpeqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( 𝑢 × 𝑢 ) = ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) |
| 296 | 295 | ineq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) = ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
| 297 | relinxp | ⊢ Rel ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) | |
| 298 | relinxp | ⊢ Rel ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) | |
| 299 | vex | ⊢ 𝑤 ∈ V | |
| 300 | 299 | eliniseg | ⊢ ( 𝑦 ∈ V → ( 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ↔ 𝑤 𝑠 𝑦 ) ) |
| 301 | 290 300 | anbi12d | ⊢ ( 𝑦 ∈ V → ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ↔ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) ) |
| 302 | 301 | elv | ⊢ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ↔ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) |
| 303 | orc | ⊢ ( 𝑤 𝑠 𝑦 → ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) | |
| 304 | 303 274 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑤 𝑠 𝑦 ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
| 305 | 304 | adantrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
| 306 | 284 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → 𝑠 ⊆ ∪ ran 𝑊 ) |
| 307 | 306 | ssbrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → ( 𝑧 𝑠 𝑤 → 𝑧 ∪ ran 𝑊 𝑤 ) ) |
| 308 | 305 307 | impbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 𝑧 𝑠 𝑤 ) ) |
| 309 | 302 308 | sylan2b | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 𝑧 𝑠 𝑤 ) ) |
| 310 | 309 | pm5.32da | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 ∪ ran 𝑊 𝑤 ) ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 𝑠 𝑤 ) ) ) |
| 311 | df-br | ⊢ ( 𝑧 ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) | |
| 312 | brinxp2 | ⊢ ( 𝑧 ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 ∪ ran 𝑊 𝑤 ) ) | |
| 313 | 311 312 | bitr3i | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 ∪ ran 𝑊 𝑤 ) ) |
| 314 | df-br | ⊢ ( 𝑧 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) | |
| 315 | brinxp2 | ⊢ ( 𝑧 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 𝑠 𝑤 ) ) | |
| 316 | 314 315 | bitr3i | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 𝑠 𝑤 ) ) |
| 317 | 310 313 316 | 3bitr4g | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 〈 𝑧 , 𝑤 〉 ∈ ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ↔ 〈 𝑧 , 𝑤 〉 ∈ ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) ) |
| 318 | 297 298 317 | eqrelrdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) = ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
| 319 | 318 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) = ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
| 320 | 296 319 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
| 321 | 294 320 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) ) |
| 322 | 321 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
| 323 | 226 322 | sbcied | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
| 324 | 218 323 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 325 | 324 | exp32 | ⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 326 | 325 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑠 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 327 | 6 326 | biimtrid | ⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 → ( 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 328 | 327 | rexlimdv | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 329 | 45 328 | biimtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 330 | 329 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
| 331 | 213 330 | jca | ⊢ ( 𝜑 → ( ∪ ran 𝑊 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 332 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑋 𝑊 ∪ ran 𝑊 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ∪ ran 𝑊 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 333 | 39 331 332 | mpbir2and | ⊢ ( 𝜑 → 𝑋 𝑊 ∪ ran 𝑊 ) |
| 334 | 22 | releldmi | ⊢ ( 𝑋 𝑊 ∪ ran 𝑊 → 𝑋 ∈ dom 𝑊 ) |
| 335 | 333 334 | syl | ⊢ ( 𝜑 → 𝑋 ∈ dom 𝑊 ) |