This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | ||
| Assertion | fpwwe2lem10 | ⊢ ( 𝜑 → 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | |
| 5 | 1 | relopabiv | ⊢ Rel 𝑊 |
| 6 | 5 | a1i | ⊢ ( 𝜑 → Rel 𝑊 ) |
| 7 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) | |
| 8 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑤 𝑊 𝑡 ↔ ( ( 𝑤 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) ∧ ( 𝑡 We 𝑤 ∧ ∀ 𝑦 ∈ 𝑤 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 9 | 8 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑡 ) → ( 𝑤 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) ) |
| 10 | 9 | simprd | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑡 ) → 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) |
| 11 | 10 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) |
| 13 | dfss2 | ⊢ ( 𝑡 ⊆ ( 𝑤 × 𝑤 ) ↔ ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) = 𝑡 ) | |
| 14 | 12 13 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) = 𝑡 ) |
| 15 | 7 14 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 = 𝑡 ) |
| 16 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) | |
| 17 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑤 𝑊 𝑠 ↔ ( ( 𝑤 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) ∧ ( 𝑠 We 𝑤 ∧ ∀ 𝑦 ∈ 𝑤 [ ( ◡ 𝑠 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑠 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 18 | 17 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → ( 𝑤 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) ) |
| 19 | 18 | simprd | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) |
| 20 | 19 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) |
| 22 | dfss2 | ⊢ ( 𝑠 ⊆ ( 𝑤 × 𝑤 ) ↔ ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) = 𝑠 ) | |
| 23 | 21 22 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) = 𝑠 ) |
| 24 | 16 23 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 = 𝑡 ) |
| 25 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝐴 ∈ 𝑉 ) |
| 26 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 27 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑤 𝑊 𝑠 ) | |
| 28 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑤 𝑊 𝑡 ) | |
| 29 | 1 25 26 27 28 | fpwwe2lem9 | ⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → ( ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ∨ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) ) |
| 30 | 15 24 29 | mpjaodan | ⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑠 = 𝑡 ) |
| 31 | 30 | ex | ⊢ ( 𝜑 → ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) |
| 32 | 31 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑡 ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) |
| 33 | 32 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑤 ∀ 𝑠 ∀ 𝑡 ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) |
| 34 | dffun2 | ⊢ ( Fun 𝑊 ↔ ( Rel 𝑊 ∧ ∀ 𝑤 ∀ 𝑠 ∀ 𝑡 ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) ) | |
| 35 | 6 33 34 | sylanbrc | ⊢ ( 𝜑 → Fun 𝑊 ) |
| 36 | 35 | funfnd | ⊢ ( 𝜑 → 𝑊 Fn dom 𝑊 ) |
| 37 | vex | ⊢ 𝑠 ∈ V | |
| 38 | 37 | elrn | ⊢ ( 𝑠 ∈ ran 𝑊 ↔ ∃ 𝑤 𝑤 𝑊 𝑠 ) |
| 39 | 5 | releldmi | ⊢ ( 𝑤 𝑊 𝑠 → 𝑤 ∈ dom 𝑊 ) |
| 40 | 39 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑤 ∈ dom 𝑊 ) |
| 41 | elssuni | ⊢ ( 𝑤 ∈ dom 𝑊 → 𝑤 ⊆ ∪ dom 𝑊 ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑤 ⊆ ∪ dom 𝑊 ) |
| 43 | 42 4 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑤 ⊆ 𝑋 ) |
| 44 | xpss12 | ⊢ ( ( 𝑤 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( 𝑤 × 𝑤 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 45 | 43 43 44 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → ( 𝑤 × 𝑤 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 46 | 19 45 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) |
| 47 | 46 | ex | ⊢ ( 𝜑 → ( 𝑤 𝑊 𝑠 → 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 48 | velpw | ⊢ ( 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 49 | 47 48 | imbitrrdi | ⊢ ( 𝜑 → ( 𝑤 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
| 50 | 49 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑤 𝑤 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
| 51 | 38 50 | biimtrid | ⊢ ( 𝜑 → ( 𝑠 ∈ ran 𝑊 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
| 52 | 51 | ssrdv | ⊢ ( 𝜑 → ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 53 | df-f | ⊢ ( 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( 𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) ) | |
| 54 | 36 52 53 | sylanbrc | ⊢ ( 𝜑 → 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ) |