This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssundif | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.6 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) | |
| 2 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 2 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 4 | elun | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) | |
| 5 | 4 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) |
| 6 | 1 3 5 | 3bitr4ri | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 8 | df-ss | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 9 | df-ss | ⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) | |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |