This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unssd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| unssd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | unssd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| 2 | unssd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 3 | unss | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) | |
| 4 | 3 | biimpi | ⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ 𝐶 ) |